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Abstract 

Clouds significantly influence Earth’s radiative balance with complex changes in response to surface 
warming. The key drivers of the changes are the sea surface temperature (SST) pattern effect that 
reshapes cloud distributions, and the beta feedback that scales low-level fraction change to climatological 
amounts. Cloud radiative feedback remains the largest source of uncertainty in future climate projections, 
but current constraints are insufficient. Here, we demonstrate that the percentage change in tropical cloud 
fraction, driven by spatial patterns SST increase, is linked to cloud height variations. We introduce a 
proportional warmer-get-higher paradigm and develop a pattern-based analytical framework, identifying 
three key factors governing cloud feedback: percentage cloud sensitivity to SST, climatological cloud 
cover, and SST warming patterns relative to the tropical mean. By leveraging recent observations to 
constrain these factors in two stages, we establish a process-oriented emergent constraint on projected 
cloud feedback in the 21st century. The first stage substitutes simulated cloud sensitivity and mean cloud 
cover to correct biases and reduce spread by half. Then, the second stage attempts to further constrain 
the SST pattern effect, which explains 79% of the remaining spread in an attribution procedure. This 
percentage framework yields total, low, middle, and high cloud feedback of 0.49±0.27, 0.33±0.21, 
0.09±0.09, and 0.07±0.06 W m-2 K-1 (90% confidence), respectively. It reduces intermodel uncertainty by 
59% for cloud feedback and 33% for surface warming, resulting in a climate sensitivity of 4.08±0.97 K. 

 
Main Text 
 
Introduction 
 
As an important component of the global hydrological cycle, clouds exert a key influence over Earth’s 

radiative energy budget (1). This process consists of the reflection of solar radiation by all clouds, and 

infrared absorption/emission mainly by clouds in the upper and mid-troposphere (2). Because cloud 

physics are complex in both convective and radiative contexts (3, 4), there is an enormous range of the 

cloud responses to the greenhouse effect in climate models (5). This leads to great uncertainty of the 

climate sensitivity, i.e., the projected future global warming after climate models have reached equilibrium 

with an imposed greenhouse gas increase (6). Decades of research have been devoted to constraining 

this cloud radiative feedback, including emergent constraints using observable statistics under the current 

climate to correct the model projections (7). However, recent studies have constrained low cloud 

feedback with different foci and results (8–10), such as 0.25±0.18 W m-2 K-1 over the tropical oceans, as 

well as 0.19±0.12 and 0.37±0.37 W m-2 K-1 in the near-global marine regions. 

 

The diversity in both the methods and outcomes reflects the lack of a precise and clear understanding of 

cloud change processes. This study focuses on two distinct drivers among the many different 

mechanisms (6-10), some of which are widely accepted. On the one hand, the pattern effect of the sea 

surface temperature (SST) increase (11) describes the impact of temporally evolving spatial SST patterns 

on the radiative feedbacks and equilibrium climate sensitivity (12, 13) through reshaping the tropical 

hydrological cycle, with large uncertainty among climate models (14–17). In the Coupled Model 

Intercomparison Project (CMIP) phase 5, cloud feedback is most sensitive to the SST in the Indo-Pacific 

warm pool, while in CMIP6 it depends on all regions with robust SST pattern change (18). On the other 
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hand, the beta feedback of low-level cloud change (19) represents a local coupling between the 

boundary-layer cloud fraction, radiative cooling, and relative humidity based on spatially uniform SST 

warming (16). Hence, the strength of the low cloud radiative effects simulated in the current climate can 

largely determine the strength of the low cloud response to climate change. This results in a low cloud 

reduction proportional to climatology, with a strong negative correlation between them in regions where 

the mean-state cloud fraction is less than 40% (20). It is still unclear whether other types of clouds follow 

a similar scaling scheme. 

 

Thus, achieving a consistent understanding across different model generations and cloud types remains 

a grand challenge. In this study, we introduce a new analytical framework to diagnose cloud feedback by 

examining the percentage change in cloud fraction relative to the climatological mean cloud cover. We 

find that this percentage change is approximately linearly related to the anomalous SST warming relative 

to the tropical mean, consistently between the observations and two generations of model projections. 

Notably, the correlations between anomalous SST and percentage cloud changes are opposite for high 

and low clouds, reflecting variations in cloud top height. Our percentage framework therefore proposes a 

proportional warmer-get-higher paradigm and identifies three key factors driving cloud radiative feedback. 

 

Using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud measurements (21, 22), 

converted radiative kernels (2), and a suite of SST observations (23), we constrain future projections from 

7 CMIP5 and 14 CMIP6 models (24, 25). Employing an uncertainty attribution procedure, this stagewise 

emergent constraint efficiently reduces the intermodel spread of the 21 CMIP simulations. In the first 

stage, we indirectly link feedback uncertainty to historical cloud sensitivity to SST, substituting simulated 

sensitivity and present-day cloud cover to correct biases and reduce uncertainty by half. The second 

stage attempts to further constrain the SST pattern effect, explaining 79% of the remaining spread. 

Ultimately, our process-oriented constraint reduces uncertainty by 59% for cloud feedback and 33% for 

climate sensitivity. Validation during the historical period constrains tropical cloud feedback uncertainty to 

a quarter of the original range, aligning well with the observed feedback and demonstrating the 

robustness of our methodology. 

 
Results 
 
Systematic control of the SST patterns on percentage cloud change 

 

We adopt abrupt CO2 quadrupling (abrupt-4×CO2) runs by both the CMIP5 and CMIP6 models, and 

calculate the monthly changes as the differences in means between model years 1–10 and 131–140 (9). 

They are normalized by the global-mean increase in the surface (air) temperature, since climate feedback 

is defined as the net radiative response at the top of the atmosphere per unit of global warming. For 
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simplicity, we denote the normalized changes as 𝛿 and omit the common K-1 in the units. Cloud changes 

(26) involve the coverage (fraction, 𝐶), height (top pressure), and opacity (optical depth) of clouds. 

Summing through the optical depths, we categorize the cloud types according to top height into high 

(<440 hPa), middle (440–680 hPa), and low (>680 hPa) clouds. In passive satellite observations and 

simulators, apparent changes in low clouds can arise due to changes in higher-level clouds that reveal or 

obscure the underlying low clouds (9, 27), so we subsequently remove this obscuration effect (Methods). 

 

In the tropical hydrological cycle, the SST warming patterns influence precipitation (14, 15) and circulation 

(16, 17) in a percentage manner, i.e., their changes are proportional to their climatological values. This 

convective effect on high clouds can be combined with the beta feedback of low clouds, to apply 

climatological modulation to the pattern effect for all cloud types. Thus, Supplementary Materials (Fig. S1) 

qualify that cloud fraction change is strongly influenced by SST patterns (T*, relative SST increase 

deviating from the tropical mean warming) in terms of sign and by climatological amounts in terms of 

strength. Of course, cloud responses physically depend on where relative SST warming occurs (i.e., 

regions of climatological ascent or descent). Still, these regions are characterized by more high or low 

clouds in present climate, respectively. Therefore, 𝛿𝐶 exhibits various shifts from the SST patterns due to 

the 𝐶-induced disparity in strength, which is even negligible for middle clouds (Fig. S1). Thus, our 

percentage framework implicitly considers the regional regimes using the climatological amount, as a 

local physical factor for cloud fraction change. 

 

We therefore examine the percentage cloud change (∆) in the tropics as the ratio of fraction change to 

climatological amount. The definition of the tropics extends to the subtropics, i.e., 40S–40N (28, 29), 

although spatial correlations increase for a narrower tropical band. Using overbars to indicate the annual 

and multi-model averages, Fig. 1 clearly reveals a pictorial spatial correlation (rs) between the simulated 

𝑇∗ and ∆ patterns, in both sign and strength for high (rs = 0.56) and low (rs = -0.58) clouds. Similar to 

previous studies (15, 17), 𝑇∗ features El Niño-like warming peaks in the eastern equatorial oceans and 

south-to-north gradients in the subtropical Pacific. Fewer low and more high clouds appear over the areas 

with relatively warmed SSTs, predicting a rise of cloud tops (15, 30) in proportion to the cloud climatology. 

 

According to the definition of altitude change for total clouds (2, 26, 30), we refer to the above relationship 

as the proportional warmer-get-higher paradigm. However, different physical mechanisms may be at work 

for low clouds and high clouds separately. Cross-comparisons reveal that ∆ has a reasonable advantage 

over 𝛿𝐶. The tropical ∆ responds to 𝑇∗ by the same order of magnitude for all cloud types (Fig. 1) and 

exhibits consistent vertical patterns in the troposphere (Fig. S2). Moreover, the oceanic zonal and 

equatorial meridional means of ∆ imply a potential competition between cloud regimes. That is, mid-level 
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clouds are associated with high clouds in the convective deep tropics, and with low clouds in the eastern 

equatorial and subtropical subsidence regions. Also shown in Fig. 1B, these changes represent their 

respective cloud regimes inside and outside ±15° latitudes, by similar scatters and strong rs (0.62 and -

0.4) with the SST patterns. The corresponding regression slopes are 22.2% K-1 and -10.2% K-1, which is 

consistent with those of 16.9% K-1 and -8.5 % K-1 for high and low clouds, respectively. Such a distinction 

in regimes can result from the depth of convection (31) and have led to the negligible correlation for the 

entire tropics. This also indicates that the category of mid-level clouds is artificial and should be treated 

with caution. However, a region-specific cloud categorization is beyond the scope of this study, though it 

can be an interesting topic for future research. For now, we will continue to use the traditional definition of 

cloud types. 

 

Pattern-based analytical framework using percentage cloud change 

 

In order to attribute and constrain the uncertainty in cloud change and feedback, we develop a pattern-

based percentage framework oriented by the above relationship (summarized as the first two steps in Fig. 

2). The analytical definition for the patterns of percentage change in cloud fraction is 

Δ =
𝛿𝐶

𝛾
, 𝛾 = {

 𝐶,    40S − 40N
 1,    Extratropics

,       [1] 

where 𝛾 (unitless fraction) is a percentage parameter applied only to the tropical clouds, since Fig. S1 

shows little influence of the large local 𝐶 (%) on the generally weak 𝛿𝐶 (%) in the extratropics. Although 

this local denominator is small in some regions, it is still greater than zero. As shown in Fig. 1, land areas 

experience significant percentage cloud change for low and middle clouds due to minimal cloud 

coverage. However, these values are not extreme since cloud fraction change is weak where climatology 

is small. 

 

The proportional warmer-get-higher paradigm suggests an empirical pointwise formulation between 

clouds and SST (15). 

Δ ≈ 𝛼 ∙ 𝑇∗ + 𝛽 〈𝛿𝑇𝑠〉,        [2] 

where 𝛼 (% K-1) is defined as the percentage cloud sensitivity to the SST pattern change (8), and 𝛽 (% K-

1) measures this to the global-mean surface warming (〈𝛿𝑇𝑠〉 = 1 K after normalization). Separating the 

relative contributions of the pattern effect and overall warming, 𝛼 and 𝛽 are spatial constants only as a 

function of model and cloud type, ranging from positive for high clouds to negative for low clouds. Above 

the 99.99% confidence level, 𝛽 has a strong mean rate of -2.3% K-1 (Fig. 1C) reflecting low cloud 

reduction due to overall warming (32). This is spatially proportional to the cloud climatology, manifested 
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by the beta feedback. This reduces global radiative cooling in favor of an overall positive feedback, driven 

by both radiative and latent heating via stability and entrainment (30, 33). 

 

Furthermore, Fig. 3A exhibits wide ranges of 𝛼 and 𝛽 between models (8), which has also been found for 

regional precipitation changes (15). Our tests on stability indices (Fig. S4) indicates that these percentage 

sensitivities share similar relative strengths contributed by cloud-controlling factors (8, 9, 27, 28) within a 

given model. Therefore, 𝛼 and 𝛽 have a high intermodel correlation (rm) of 0.71 for low clouds (0.62 and 

0.83 for middle and high clouds, respectively), which allows us to predict 𝛽 ≈ 0.29 ∙ 𝛼. This relationship 

can be inserted into Eq. 2 to obtain (see Methods) 

Δ ≈ 𝛼 ∙ (𝑇∗ +
𝛽

𝛼
〈𝛿𝑇𝑠〉) ≈ 𝛼 ∙ (𝑇∗ + 𝑇0),      [3] 

where 𝑇0 =
𝛽

𝛼
〈𝛿𝑇𝑠〉 = 0.29 〈𝛿𝑇𝑠〉 = 0.29 K for low clouds, which are 0.37 and 0.31 K for middle and high 

clouds, respectively. Regardless of the model, 𝑇0 scales down the cloud response to the overall warming 

using pattern effect, replacing the model-dependent 𝛽 and leaving only one sensitivity 𝛼 to constrain. 

Combining Eqs. 1 and 3 quantifies that the cloud fraction change depends on both the SST patterns T* 

(local and relative SST change) and the climatological amount 𝛾 (local physical factor), which is an 

insightful framework for integrating the pattern effect and beta feedback, respectively. 

𝛿𝐶 = Δ ∙ 𝛾 ≈ 𝛼 ∙ (𝑇∗ + 𝑇0) ∙ 𝛾.       [4] 

 

Cloud feedback (𝜆) is typically calculated (2) from the product of fraction change and radiative kernels (𝐾); 

however, the above percentage framework, inspired by our proportional warmer-get-higher, gives rise to 

an innovative redefinition of cloud feedback. 

𝜆 = 〈𝛿𝐶 ∙ 𝐾〉 = 〈Δ ∙ 𝛾𝐾〉 ≈ 〈𝛼 ∙ (𝑇∗ + 𝑇0) ∙ 𝛾𝐾〉,     [5] 

where 〈 ∙ 〉 denotes the feedback calculation, with a positive value of 𝜆 indicating positive cloud feedback. 

This explicitly discovers three key factors for the uncertainty in 𝜆, namely cloud sensitivity (𝛼), fractional 

kernels (𝛾𝐾), and T*, which would be constrained in two stages. Since low clouds play a leading role in 

total cloud feedback (26), as shown in Supplementary Materials with Fig. S5, we take them as the main 

example for the following constraint. 

 

Initial constraint with the observed cloud fraction and projected sensitivity 

 

Adopting the MODIS clouds (22, 34) and averaged SST suite (23), the observed changes during 2003–

2022 (Fig. 4) are calculated (Methods) using a Linear Inverse Model (LIM). The LIM is an empirical 
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dynamical model designed to minimize biases caused by interannual variability. The observations exhibit 

similar behaviors as the CMIP simulations in the tropical Pacific and Indian Ocean, but not in the Atlantic, 

which is likely due to internal decadal variability (35–37). Nevertheless, our warmer-get-higher paradigm 

remains robust, as indicated by the strong Δ-𝑇∗ relationship with opposite rs values of 0.53 and -0.5 

between high and non-obscured low clouds, respectively. Since the vertical patterns (Fig. S6) are similar 

but only noisier in the equatorial Pacific (rs = 0.75) and northern tropics (rs = 0.51), the observations agree 

with the simulations when comparing the consistency in the magnitude of Δ and the disparity in the 

strength of 𝛿𝐶 (modulated by 𝐶). 

 

We then calculate the percentage cloud sensitivity from the above observations and use this 𝛼𝑜 to 

construct an observational constraint on the rich diversity (-2 to –25%) of the percentage cloud sensitivity. 

As outlined by the last two steps in Fig. 2, Figs. 3 and 4 are utilized to generate Figs. 5 to 7. The CMIP 

historical simulations are more consistent with the observations over time than abrupt-4×CO2. Therefore, 

we switch to this scenario and calculate the low cloud sensitivity (𝛼ℎ) for changes between 1986–1995 

and 1996–2005, as shown in Fig. 3B. We then scatter 𝛼ℎ from the history with 𝛼 into the future, which 

exhibits a close relationship (rm = 0.86), to ensure the robustness in between. The observed sensitivity 

has a low cloud average (𝛼𝑜 = -6.7% K-1) near the center of the historical range (-1 to -18% K-1), which 

can be projected via linear regression of 𝛼 against 𝛼ℎ. The resulting 𝛼𝑝 (-7.39% K-1) is slightly weaker 

than the ensemble-mean 𝛼 (-8.5% K-1) for abrupt-4×CO2 (Fig. 1C). Incidentally, the intercept in the short-

term observations (Fig. 4C) drops to about half of that of the abrupt-4×CO2 simulations. 

 

The projected sensitivity, 𝛼𝑝, can now be used to constrain the 𝛼-induced uncertainty. As shown in Fig. 

3C, low cloud 𝛼 contributes 48% (rm = -0.69) of the spread in global total cloud feedback, based on a 

strong intermodel correlation (0.92) between the tropical and global feedbacks (Fig. S7). Here, three 

outlier models weaken the contribution, but are shown in Supplementary Materials to hardly affect our 

constraint and included in the final results. We apply a scaling substitution that multiplies Eq. 5 by the 

ratio 
𝛼𝑝

𝛼
 for all cloud types in each experiment (see Methods and Fig. S2). This is equivalent to substituting 

the projected observations 𝛼𝑝 for simulated model 𝛼. According to our analytical framework, it should 

eliminate the uncertainty and bias associated with percentage cloud sensitivity in cloud feedback. 

𝜆𝑠 = 〈Δ𝑠 ∙ 𝛾𝑜𝐾〉 = 〈
𝛼𝑝

𝛼
Δ ∙ 𝛾𝑜𝐾〉 ≈ 〈𝛼𝑝 ∙ (𝑇∗ + 𝑇0) ∙ 𝛾𝑜𝐾〉,    [6] 

where the subscript s denotes substituted or scaled, o marks observed, and p means projected. It can be 

seen that Eq. 6 also constrains 𝛾𝐾 in Eq. 5 by replacing the simulated 𝛾 with the observed 𝛾𝑜 (pattern 
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comparisons are shown in Fig. S8). However, the SST patterns have not yet been constricted and remain 

as shown in Fig. S1D. 

 

Our initial constraint reduces the uncertainty and biases in 𝜆 via 𝛼 in sensitivity and 𝛾 in pattern, deriving a 

more reasonable 𝜆𝑠 (Fig. 5). This is as if 𝜆𝑠 were computed from the observed mean state with reliable 

projected sensitivity, but perturbed by the original uncertainty in modeled T*. Such an observational 

substitution has the distinct advantage of intuitively correcting common model biases in the fractional 

kernels that induce large and noisy 𝜆 over the tropical oceans (Fig. 5A), e.g., due to the excessive 

equatorial cold tongue (16). This leads to more positive and the most uncertain patterns of 𝜆𝑠 

preferentially in the eastern tropical basins (Fig. 5B), suggesting stronger non-obscured reductions in low 

clouds modulated by its observed climatology. Eq. 6 also greatly attenuates the original feedback and 

nearly removes its uncertainty elsewhere, including the negative and diverse signals in the convective 

regions and high latitudes of the North Atlantic. Especially, the zonal mean patterns show that feedback 

effects of middle and high clouds above 680 hPa are almost eliminated in terms of both the mean and 

spread. 

 

These turn the original global cloud feedback of 0.49±0.65, 0.26±0.3, 0.12±0.37, and 0.11±0.13 W m-2 K-1 

(Fig. S5) to the substituted feedback of 0.45±0.3, 0.3±0.24, 0.08±0.11, and 0.07±0.13 W m-2 K-1 (90% 

confidence) for total, low, middle, and high clouds, respectively. Fig. 7C compares 𝜆𝑠 with 𝜆 to show its 

uncertainty reductions of 69% and 19% for middle and low clouds, respectively. This halves the range of 

total cloud feedback and reduces its mean by 0.04 W m-2 K-1, mainly due to higher-level clouds, but 

mitigated by an equal increase in low cloud feedback. 

 

Attribution of cloud feedback uncertainty to the SST patterns 

 

The observational constraint on the percentage cloud sensitivity to SST patterns and mean cloud cover 

are sufficient to reduce more than half of the uncertainty in total cloud feedback. We now further constrain 

the global cloud feedback by constricting the SST patterns themselves (T*). Indeed, the spatial mean of 

SST patterns is defined to be zero, but fractional kernels can assign unequal weights in Eqs. 5 and 6, 

creating a global radiative imbalance. Moreover, there is great uncertainty (Fig. 1D) in T* (15), which can 
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thus be incorporated into cloud feedback, allowing the pattern effect to profoundly perturb the climate 

sensitivity (11, 12, 13, 35). 

 

To quantify this, we decompose 𝜆𝑠 using our percentage analytical framework to design an attribution 

procedure (see Methods). This can demonstrate component reductions in feedback uncertainty by the 

initial constraint and further constrain the substituted feedback. 

𝜆𝑠 = 〈Δ𝑠 ∙ 𝛾𝑜𝐾〉 + 〈Δ𝑠 ∙ 𝛾𝑜𝐾′〉 + 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾〉 + 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾′〉 + 〈Δ𝑠′𝑅 ∙ 𝛾𝑜𝐾〉,  [7] 

where the overbars and primes denote ensemble means and intermodel anomalies, 𝐾′ is interpolated for 

each model from the surface shortwave albedo along longitude, Δ𝑠′∗ is the anomalous scaled percentage 

cloud change (Δ𝑠′) driven by T*, and Δ𝑠′𝑅 is the residual factors, including the inversion strength (12, 28) 

and optical depth (9, 38). The last term introduces noise into Eqs. 2 to 6, so we use the approximate 

equal sign (≈). 

 

Instead of evaluating Eqs. 6 and 7 for each model, we obtain Δ𝑠′∗ via intermodel singular value 

decomposition (SVD) between T* and Δ𝑠′ across the globe. This quantifies the SST pattern effect on the 

percentage cloud change for individual models. To avoid overreliance on either variable, we provide 

covariant spatio-model modes between the two (15, 29, 39, 40). The SVDs are applied to both the scaled 

Δ𝑠 and unscaled Δ, presenting similar modes in reasonably shifted orders (Supplementary Materials, Fig. 

S9 and Methods). We then adopt these results to perform two sets of attributions using Eqs. 7 and 12, for 

𝜆𝑠 with and 𝜆 without the initial constraint. In turn, the terms on the right-hand side represent the product 

of the ensemble averages including 𝑇0, biases in the fractional kernels, uncertainty induced by the SST 

patterns, nonlinear interaction between the two, and the residual effect. 

 

Since the cumulative variance of SVD reconstruction converges after the ~11 leading modes, we 

accumulate the first 12 modes to represent the T* effects (17) in both 𝜆𝑠 (Fig. S10) and 𝜆 (see Methods). 

A comparison of these attributions between Fig. 6 and Fig. S11 clearly shows how the initial constraint 

halves the uncertainty in total cloud feedback. The 90% confidence intervals of T* and the residual terms 

are reduced by 55% and 43%, respectively, and the kernel and interaction terms are largely eliminated, 

as is expected. The latter is similar for all of the cloud types, while the former varies, leading to different 

uncertainty reductions. As a result, the T* contribution to the intermodel variance drops from 82% for 𝜆 to 

79% for 𝜆𝑠, and the residuals explain 21%. The kernel biases account for 18% of the uncertainty in 𝜆. The 

decompositions for the cloud types largely agree with that of total cloud feedback (Fig. 6), recognizing the 
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residual factors as a secondary contributor and the SST patterns as the primary. The sum of all of the 

factors recovers 100% of the total uncertainty. 

 

Eventual constraint attempted for the SST pattern effect 

 

SVD mode 1 (Fig. S9 A to C) shows a prominent T* feature in 30S–30N, correlated with the 

climatological fraction of low plus middle clouds (Fig. S1 B + C; rs = 0.33), and the fractional net kernel 

(Fig. S8C; rs = -0.34). This establishes a link between the SST patterns and climatological cloud radiative 

effects in space, implying air-sea feedback against the backdrop of a spatially uniform SST increase. The 

fraction of low clouds decreases in proportion to the present-day fraction (19, 20), indicating rapid 

dissipation in the subsidence rather than convective regions. Therefore, surface solar heating increases 

more in the equatorial cold tongue and northeastern subtropical Pacific, which drives the anomalous 

warming patterns. Such an initial SST anomaly scales with climatological cloud radiative effects and can 

lead to further evolution (e.g., meridional gradients in SVD mode 2) of the equilibrium (41) SST patterns 

(Fig. S1D). Reasonably, the magnitude of this local feedback is also adjusted by the percentage cloud 

sensitivity, as revealed by its strong intermodel correlation with the principal components (PCs) of mode 

1: 0.51 and 0.57 (0.46 and 0.52 with the outlier models) for SST and clouds, respectively. Thus, our 

percentage analytical framework allows the sensitivity diversity to play a key role in tuning SST patterns, 

generating up to 32% of the large uncertainty among models. 

 

The above implication inspires the eventual constraint (Fig. 2), based on recent observations of 

percentage cloud sensitivity. We regress the LIM-perturbed low cloud Δ in the non-obscured MODIS 

dataset, against T* from each member of the SST suite. The 90% confidence interval of these sensitivity 

estimates indicates the uncertainty range of 𝛼𝑜 (see Fig. 3B). The range is then projected onto 𝛼𝑝 through 

the previously established regression of 𝛼 against 𝛼ℎ. This leads to an uncertainty range that is slightly 

narrower than that of 𝛼𝑜. It constricts the nine runs (filled symbols in Fig. 3C), which were performed 

using three CMIP5 and six CMIP6 models. We postulate that these models have more reliable 𝛼 values 

to project some reasonable magnitudes of the local cloud feedback and determine the most likely T*. We 

finally complete the emergent constraint with the attribution procedure according to Eq. 7. In particular, 

the three terms related to the SST pattern effect are extracted from these models; however, the residual 

factors should remain unchanged (see Methods). Therefore, the dominant T* term is constrained to the 

values of the nine models in Fig. 6. Compared to Fig. S11, its uncertainty is reduced by 35%, 6%, 40%, 

and 43% for total, low, middle, and high clouds, respectively. 

 

In total, the constrained cloud feedback in Fig. 7A is more positive than that in Fig. 5B, and the maxima 

still remain in the low cloud regions, where the intermodel uncertainty is further reduced and is mainly 
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confined to the eastern tropical ocean basins. Compared to the original T* (Fig. S1D), the constricted one 

(Fig. 7B) exhibits generally weakened patterns, except for the Southern Ocean warming. Nevertheless, 

these SSTs look close in the ensemble mean because they share the same SVD modes; whereas, the 

tropical spread is much reduced by the constriction using the nine models that have similar amplitudes for 

the cloud-triggered mode. The global high, middle, low, and total cloud feedback (Fig. 7C) becomes 

0.07±0.06, 0.09±0.09, 0.33±0.21, and 0.49±0.27 W m-2 K-1 (90% confidence), respectively. Examining the 

outlier models at the end of Supplementary Materials reveals a marginal effect on our constraint, so we 

keep them in the final results. This also reflects the great robustness of our method. 

 

Aligned with the literature, our non-obscured low cloud feedback is similar to the multi-evidence work (9, 

10) and median-tight effort (8) in the ensemble mean and uncertainty, respectively. However, our pattern-

based percentage framework consistently constrains global radiative feedback across all of the cloud 

types, rather than just low clouds. In detail, it applies to the entire cloud fraction histogram with different 

scaling between pressure levels, explicitly addressing the amount and altitude feedbacks simultaneously. 

Furthermore, Supplementary Materials exhibit that our approach can implicitly adjust optical depth 

feedback (see Fig. S12). For instance, high cloud altitude feedback remains positive during our constraint 

because of rising cloud tops. However, this is mitigated by negative optical depth feedback, which results 

from increased solar reflection due to thickening high clouds (26). Such a decrease in feedback of -0.04 

by high clouds reinforces the -0.03 by middle clouds, to offset the increase of 0.07 W m-2 K-1 by low 

clouds. Thus, our constraint keeps the mean unchanged for total cloud 𝜆 while significantly reducing its 

uncertainty by 59%, as significant improvements from 0.27±0.41 and 0.45±0.54 W m-2 K-1 (9, 10). 

 

Validating our methodology and constraining climate sensitivity 

 

Given the increasing complexity of the statistical analysis for observational constraints on cloud feedback, 

a validation is necessary to make a convincing case (9, 37). Therefore, we follow the precedent of recent 

studies to validate our two-stage emergent constraint by applying it to the historical simulations in the 

tropics, where T* differs from the future. These results are compared with cloud feedback based on the 

observations (Fig. 8), where the aerosol-cloud interaction is important. However, it cannot be removed for 

either observations or simulations, so we do not distinguish this aerosol effect from cloud feedback. The 

historical shortwave kernel is calculated with the corresponding albedo, and the observational kernels are 

taken from an interannual reanalysis (42). The MODIS cloud change in Fig. S6 A and B is used to 
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compute the radiative effect, normalized by the tropical-mean warming from the SST suite, which 

provides the uncertainty. 

 

In Fig. 8, the observed tropical feedback (90% confidence) of total clouds is 0.55±0.11 W m-2 K-1, which is 

consistent with the global feedback of 0.57±0.71 W m-2 K-1 when the effects of changing water vapor, 

surface and atmospheric temperature, surface albedo, and radiative forcing are subtracted from the top-

of-atmosphere flux (43). This is dominated by low clouds (0.49±0.1), with insignificant contributions from 

middle (-0.05±0.01) and high (0.11±0.02 W m-2 K-1) clouds. In contrast, the original historical cloud 

feedback has a very small ensemble mean but extremely large intermodel variability (90% confidence), 

i.e., 0.07±2.98, -0.18±1.75, 0.13±0.89, and 0.12±0.67 W m-2 K-1. This bias from the observations is rapidly 

reduced by the substituted feedback of 0.87±0.88, 0.8±0.83, 0.14±0.17, and -0.07±0.36 W m-2 K-1. Finally, 

the constrained feedback can well cover the observed range for the strong total (0.69±0.53) and low 

(0.56±0.47) cloud feedback, and closely overlaps with that for the weak middle (0.23±0.17) and high (-

0.1±0.24 W m-2 K-1) cloud feedback. This not only dramatically reduces total cloud feedback uncertainty 

by 82%, but also fully validates our percentage framework and stagewise constraint. 

 

Our pattern-based percentage framework effectively constrains total cloud feedback — consisting of 

those due to amount, altitude, and optical depth — across the globe via strong relationship between the 

tropical and global feedbacks. Therefore, we can confidently constrain the effective equilibrium climate 

sensitivity using constrained cloud feedback (9, 13). This is estimated as the x intercept divided by two 

(as if under 2×CO2) after regressing the global-mean and annual-mean anomalies of the net downwelling 

radiative flux at the top of the atmosphere on those of the surface temperature, where both anomalies are 

calculated between the abrupt-4×CO2 scenario and the averaged piControl over years 91–140. It is 

highly correlated (rm = 0.8) with the global total cloud 𝜆, so its uncertainty can be reduced with our 

constrained net feedback. The hierarchical emergent constraint method is applied under the assumption 

of Gaussian distributions of the intermodel spreads (44). This leads to an unaffected mean of 4.08 K, and 

a 35% reduction in the spread from ±1.29 K to ±0.84 K (66% confidence), which is more effective than the 

25% reduction from the latest study (9). At the 90% confidence level, the reduction is 33% from 4.08±1.44 

K to 4.08±0.97 K, consistent with, but tighter than, a combined estimate of 4.0±1.07 K with a large 

overconfidence based on several emergent constraints (45). 

 
Discussion 
 
By integrating the pattern effect and beta feedback, which have previously been considered in isolation, 

this study reveals the systematic control of the percentage change in cloud fraction due to effect of the 

tropical SST patterns. A proportional warmer-get-higher paradigm is then proposed to tightly constrain the 

global radiative feedback for all cloud types. The main sources of intermodel variability are identified as 
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the percentage cloud sensitivity, present-day simulation biases, and regional SST change. We first 

address the former two by substituting the historical-projected observed sensitivity and MODIS cloud 

fraction and then try an observational constraint on the latter factor based on an uncertainty attribution 

procedure. The constrained uncertainty in total cloud feedback reaches about two-fifths of the original, but 

the mean value remains unchanged, suggesting that the feedback extremes are less likely to be valid. 

For the equilibrium climate sensitivity, this constraint translates into about two-thirds of the original 

uncertainty, again leaving the mean unchanged. 

 

Our validation results based on the historical simulations cover the observed range of the significant cloud 

feedback well, with an extreme uncertainty reduction of about three quarters, indicating a successful 

emergent constraint. Nevertheless, future changes in the SST patterns are highly uncertain (10, 46–52), 

which cannot be fully constrained by 𝛼 alone, as is evident in Fig. 7B with a peak in the North Atlantic. 

This reflects that the nine constricted models may have deficiencies in other areas, such as ocean 

dynamics, mean state SST biases, additional atmospheric processes, and atmosphere-ocean interactions 

(53). To further resolve such spread and improve the reliability of climate projections, SST pattern 

formation under global warming needs to be re-examined. For this, our pattern-based analytical 

framework for percentage cloud change may provide an insightful perspective as a unique trigger of air-

sea interactions. 

 
Methods 
 
SST and cloud observations. The SST observations (23) are adopted from the MODIS, Hadley Centre 

Sea Ice and SST (HadISST), Extended Reconstructed (ERSST) v5, Optimum Interpolation (OISST) v2, 

and Centennial Observation-Based Estimates (COBESST) v1. Among these, MODIS provides retrievals 

from two polar-orbiting satellites, Terra and Aqua, that sample at different times of day (morning and 

afternoon) and night (before and after midnight) at a given location. We create a data suite of all of the 

SST products to analyze their mean and uncertainty. Combining the Aqua and Terra cloud observations, 

MODIS releases a Level-3 CFMIP Observation Simulator Package (MCD06COSP). It facilitates 

comparison between climate models and satellite observations by producing synthetic MODIS data from 

the model integrations, e.g., the cloud property histogram (22). Cloud fraction is given separately for 

partly cloudy scenes and for overcast scenes, which we add together to obtain cloud fraction for all cloud 

scenes, based on the recently corrected v6.2 dataset. 

 

We use the monthly products covering 2003–2022 and process them into a spatial resolution of 1° 

latitude by 2° longitude. The SST and cloud changes are computed using an LIM to minimize the biases 

caused by interannual variability (23). The LIM is an empirical dynamical model that treats spatially 

varying climate anomalies as a combination of the predictable dynamics plus an unpredictable nonlinear 
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white noise. Approximated using a stochastically forced linear dynamical system, the time evolution of a 

climate variable is determined from the observed state vector, expressed in a reduced space of empirical 

orthogonal function (EOF). These EOFs have been obtained separately for each field, and the 20 leading 

PCs are input to the LIM. The lag-covariance for the linear dynamical operator is then computed using a 

training lag of 11 months, to which the results are generally insensitive. The least damped eigenmode of 

the LIM operator varies the slowest, so it is ultimately captured as the externally forced trend. The LIM 

provides detrended PC simulations to generate noise-induced perturbations for the trend. Thus, we 

generate 500 realizations to estimate the uncertainty in the MODIS cloud observations regressed against 

the SST suite. 

 

Admittedly, the observations do not use exactly the same criteria for interpreting cloud top pressure as 

clisccp in the models (21), e.g., many mid-level clouds retrieved by the satellite simulator are assigned 

lower heights by MODIS. This upward shift in simulated cloud tops can cause potential problems in the 

development of emergent constraints (9); however, the actual satellites retrieve cloud height about 

correctly, so our methodology can indeed resolve the error. In addition to replacing the mean-state cloud 

fraction in the models with the observations, we also scale the magnitude of the simulated cloud response 

with the observed percentage cloud sensitivity, both of which correct for the level shifts of the cloud 

observations. The only variable that we have not replaced with the observations is the SST patterns, 

which is not height dependent. All these distinctive features of our stagewise constraint would lead to 

reasonable cloud changes and result in an effective constraint. The only possible bias could be in the sign 

of middle cloud change, which might be influenced more by low clouds and less by high clouds. 

 

Multi-scenario CMIP output. Given the limited availability of the cloud property histogram (clisccp) 

variable (2), we analyze the SST and cloud changes in 21 runs using 7 CMIP5 and 14 CMIP6 models 

(24, 25) under the preindustrial control (piControl) and abrupt CO2 quadrupling (abrupt-4×CO2) scenarios, 

as well as 20 historical simulations without the unavailable CCSM4. The models (Fig. S3) provide clisccp 

and other changes for robust quantitative assessments of cloud feedback and climate sensitivity. 

CMIP6: CanESM5, CESM2-FV2*, CNRM-CM6-1, CNRM-ESM2-1, E3SM-1.0, E3SM-2.0, E3SM-2.0-

NARRM, GFDL/CM4, HadGEM3-GC3.1-LL, MIROC6, MIROC-ES2L, MRI-ESM2.0, UKESM1.0-

LL, and UKESM1.1-LL; 

CMIP5: CanESM2, CCSM4*, HadGEM2-ES, MIROC5, MIROC-ESM, MPI-ESM-LR, and MRI-CGCM3. 

*Historical simulations: CESM2 is found instead of CESM2-FV2; and CCSM4 is not available. 

 

We adopt the monthly output of one realization from each simulation and interpolate all of the fields to a 

2° latitude by 2.5° longitude grid prior to analysis. Averaged over years 91–140, the piControl runs are 

used to calculate the abrupt-4×CO2 anomalies for estimating the climate sensitivity. The abrupt-4×CO2 
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experiments are at least 140 years long (except for 104 years of CCSM4), and the changes are defined 

as the differences between the last and first 10-year long means. The historical simulations cover the 

periods 1850–2014 in CMIP6 and 1850–2005 in CMIP5. We select a mutual 20-year period of 1986–2005 

for comparison with the observations during 2003–2022. It is assumed that such a year shift would not 

affect the results, which is supported by the high rm value (0.83) for low cloud 𝛼ℎ from the CMIP6 runs 

between 1995–2014 and 1986–2005. For a consistent relationship with 𝛼 under abrupt-4×CO2, the 

changes are defined in the same way. 

 

Cloud feedback is expressed as the response of the top-of-atmosphere net radiative flux to the changes 

per unit of global-mean surface air warming; therefore, the cloud changes are normalized accordingly 

before computing the ensemble means, uncertainties, spreads, correlations, regressions, and SVDs. In 

addition, the SST patterns are normalized by the global-mean increase in the surface temperature (〈𝛿𝑇𝑠〉), 

which differs from the air warming by only -0.02±0.07 K. For simplicity, the normalized changes are 

marked by 𝛿, and the common K-1 in their units is omitted. The 90% (66%) confidence interval (e.g., of 

cloud feedback) is calculated as half of the 5–95 (17–83) percentile range of the values across the 

simulations (9). 

 

Cloud feedback computed using radiative kernels. The clisccp variable, endorsed by the Cloud 

Feedback Model Intercomparison Project (CFMIP), represents a 7 by 7 histogram of cloud properties 

along the top pressure (p) and optical depth (𝜏). Summations in its matrix or submatrices can classify total 

or each type of clouds to calculate the corresponding fraction (𝐶) in the climatology or change (𝛿𝐶), as 

well as cloud feedback (𝜆). By summing throughout 𝜏, we categorize the cloud types according to p. 

(a) High clouds: 0–440 hPa (pressure levels 5–7), all optical depths; 

(b) Middle clouds: 440–680 hPa (pressure levels 3–4), all optical depths; 

(c) Low clouds: 680–1000 hPa (pressure levels 1–2), all optical depths; 

(d) Total clouds: 0–1000 hPa (all pressure levels), all optical depths. 

 

The passive satellite sensors and simulators report the top pressure of the highest clouds in the column, 

allowing an amount increase of higher-level clouds to obscure more of low-level clouds. This reduces low 

cloud amount retrived by the satellite, even if it does not actually change (27). Here we remove this 

obscuration effect (9) by separating the real low cloud changes from the artificial changes in the satellite 

data. 

{
𝑙𝑛 =

𝑙

1−𝑈
               

𝑈 = ∑ ∑ 𝑐𝜏=7
𝜏=1

𝑝=7
𝑝=3

⟹ {
𝛿𝑐𝑛 = (1 − 𝑈̅) 𝛿𝑙𝑛

𝑐𝑛 = (1 − 𝑈̅) 𝑙𝑛̅     
,      [8] 
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where 𝑐 = 𝑐𝑝𝜏 denotes clisccp, 𝑙 = 𝑙𝑝𝜏 is the retrieved low-level cloud fraction, 𝑈 is the higher-level cloud 

amount (cloud fraction summed over all 𝜏 bins and the non-low-level p bins), 𝑙𝑛 is the non-obscured low-

level cloud fraction, 𝑈̅ and 𝑙𝑛̅ are the climatological monthly means of 𝑈 and 𝑙𝑛, and 𝛿𝑙𝑛 is the normalized 

monthly change in 𝑙𝑛. This yields non-obscured histograms of cloud fraction actually used for low clouds, 

i.e., 𝑐𝑛 and 𝛿𝑐𝑛 in climatology and change, respectively. 

 

The cloud radiative kernels (2) convert the clisccp change per unit of global-mean surface air warming 

into its corresponding radiative effect, quantifying cloud feedback across the various models as a reliable 

and consistent methodology. They use the incremental monthly cloud change to describe the differential 

response of the top-of-atmosphere shortwave and longwave fluxes. Such conversions act as spatial 

weights for the changes in the cloud properties to calculate the global feedback as follows: 

(a) Normalize the changes in cloud histogram using the global-mean surface air warming; 

(b) Interpolate the shortwave kernel with the surface albedo (upward/downward clear-sky shortwave 

flux) in each model along longitude; 

(c) Multiply the histogram changes by the longwave and interpolated shortwave kernels; 

(d) Perform summation along pressure and/or optical depth for total and each cloud type; 

(e) Average annually over 12 months and horizontally over the globe. 

The entire procedure is denoted by 〈 ∙ 〉, such as 𝜆 = 〈𝛿𝐶 ∙ 𝐾〉 in Eq. 5, where 𝜆 is defined as positive for 

positive feedback from clouds. 

 

Intermodel statistical analysis. This statistical analysis explores the dynamical interpretations for tracing 

the valuable sources of uncertainty, e.g., the contribution of the percentage cloud sensitivity to cloud 

feedback. Regular statistics use spatiotemporal fields as inputs, but here we replace the time axis with 

the model series to perform intermodel analysis. In particular, the intermodel correlations and regressions 

are performed for cloud feedback, and the variances explained by different factors are estimated as the 

exclusive R2 (to be introduced) for the total effect. In addition, Student’s t-tests are used to assess the 

confidence of the correlations using the following formula: 

𝑡𝑟 =
√𝑛−3

2
ln (

1+𝑟

1−𝑟
),        [9] 

where tr is the test statistic derived from the correlation r (rs or rm) and the sample size n. All of rm across 

the 21 models are above the 90% confidence level. Except for the (percentage) fraction change in total 

and middle clouds, all of rs pass the 99.99% confidence tests because the tropical sample size is at least 

4430 for the SST patterns or 270 for the zonal-mean cloud fraction. 

 

As an extension of the EOF, the SVD analysis (21, 22) is a popular multivariate statistical method, which 

uses two variables as inputs to identify their patterns with the maximum covariance. Here we perform 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

 

 

intermodel SVD (23, 24) to extract the effect of the SST patterns on the regional cloud changes with their 

covariant modes. Two sets of SVDs are applied to the monthly intermodel anomalies of Δ and Δ𝑠 in Eqs. 5 

and 6, respectively. They are both between the global T* (4-D: x, y, month, model) and cloud changes (6-

D: x, y, p, 𝜏, month, model) in terms of the percentage for the extended tropics (40°S–40°N) and the 

fraction for the outside extratropics. All of the variables have been concatenated into 2-D matrices with 

dimensions only along the model and the combinations of others, and the ensemble mean is removed for 

each grid box. A covariance matrix 𝐶𝑜 = Δ𝑡𝑇∗ 𝑁⁄  is then constructed by eliminating the common model 

dimension, where t denotes the transpose operator and N represents the number of models. 

 

The SVD function converts 𝐶𝑜 into a tuple of three arrays E, Σ, and F. Each column in E contains a 

singular vector for Δ, as does F for T*, while Σ contains the singular values not used here. These 

orthonormal singular vectors are identified as the spatial modes and are projected onto each of the 

variables to define the corresponding PCs, which are also model-dependent. We then use the fractional 

kernels to compute the partial feedback due to the cloud patterns in each of the SVD modes, and we 

multiply it by the corresponding PC. This reconstructs the T*-related intermodel variability in cloud 

feedbacks associated with these modes, which are ranked according to the individual variances (direct 

R2) they explain for the intermodel uncertainty in the total cloud feedback. Finally, the multi-model partial 

feedbacks reconstructed by the leading SVD modes are linearly combined to quantify their cumulative 

variance (25) using the exclusive R2 method below. 

 

Uncertainty attribution procedure for cloud feedback. Based on our analytical framework inspired by 

the warmer-get-higher paradigm, we redefine cloud feedback in terms of percentage fraction change in 

the tropics. Here, the definition of the tropics includes the subtropics, with a latitudinal range of about 

35S–35N. According to the American Meteorological Society, this can extend further poleward on west 

coasts of continents, e.g., prominent 𝛿𝐶 patterns shown in Fig. S1 reach 40° over the eastern ocean 

basins. Thus, we define the extended tropics as 40S–40N to better represent thermally driven dynamics 

(28, 29). 

 

Eq. 5 identifies key drivers of the uncertainty in cloud feedback by distinctly integrating the physical 

processes of the pattern effect and beta feedback in the extended tropics. The percentage change in 

cloud fraction is mainly controlled by the SST patterns, and its sensitivity varies between the models. This 

is independent of the cloud climatology, which introduces the biases of the mean-state simulation into the 

cloud fraction change. To obtain this in detail, Eq. 3 is derived from Eq. 2 and Fig. 3A: 

Δ ≈ 𝛼 ∙ 𝑇∗ + 𝛽 〈𝛿𝑇𝑠〉                   
𝛽 ≈ 0.29 ∙ 𝛼 − 1.91 ≈ 0.29 ∙ 𝛼

} ⟹
Δ ≈ 𝛼 ∙ 𝑇∗ + 0.29 𝛼 ∙ 1 K

 = 𝛼 ∙ 𝑇∗ + 𝛼 ∙ 0.29 K
  = 𝛼 ∙ (𝑇∗ + 𝑇0)           

.   [10] 
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We believe that the intercept of -1.91% K-1 is negligible (54, 55). It is less than the standard deviation 

(2.26 % K-1) of 𝛽 and only about 22% (Fig. 3A) of its wide range (-0.7 to -8% K-1). 

 

Eq. 5 transforms the product of cloud fraction change (𝛿𝐶) and radiative kernels (𝐾) into that of the 

percentage change (Δ) and fractional kernels (𝛾𝐾), which can be further decomposed. 

{
Δ = ∆ + Δ′ = ∆ + ∆′∗ + ∆′

𝑅

𝛾𝐾 = 𝛾𝐾 + (𝛾𝐾)′
,       [11] 

where the overbars and primes denote the ensemble means and intermodel anomalies, and ∆′∗ and ∆′
𝑅 

are the components of Δ′ induced by T* and the residual factors, respectively. It should be noted that we 

use the approximate equal sign (≈) in the above equations about Δ to imply the noise introduced by Δ′𝑅. 

In order to quantify the contributions of factors such as the T* spread and the 𝛾𝐾 biases, an uncertainty 

attribution procedure can be derived for the redefined global cloud feedback as follows: 

𝜆 = 〈(∆ + ∆′∗ + ∆′𝑅) ∙ [𝛾𝐾 + (𝛾𝐾)′]〉, 

           ⇒ 𝜆 = 〈∆ ∙ 𝛾𝐾〉 + 〈∆ ∙ (𝛾𝐾)′〉 + 〈∆′∗ ∙ 𝛾𝐾〉 + 〈∆′∗ ∙ (𝛾𝐾)′〉 + 〈∆′𝑅 ∙ 𝛾𝐾〉.   [12] 

Similarly, the substituted feedback 𝜆𝑠 in Eq. 6 can be decomposed as in Eq. 7, where Δ𝑠 and 𝛾𝑜 replace Δ 

and 𝛾, and the treatment of 𝛾𝑜𝐾 is slightly adjusted from Eq. 11: 𝛾𝑜𝐾 = 𝛾𝑜𝐾 + 𝛾𝑜𝐾′. 

 

The SST pattern effect is obtained using the intermodel SVDs mentioned above (Fig. S9). In Figs. S10 

and S11 and Fig. 6, the factor contributions are quantified slightly differently. The former only examines 

the cloud feedback anomalies associated with the ensemble-mean factional kernels (〈Δ𝑠′ ∙ 𝛾𝑜𝐾〉). The 

dominant influences of the T* term (〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾〉) converge to 77% for 𝜆𝑠 and 86% for 𝜆, both after the ~11 

leading SVD modes. In contrast, the latter two quantitatively attribute the feedback to all of the intermodel 

terms, e.g., 〈Δ𝑠 ∙ 𝛾𝑜𝐾′〉, 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾〉, 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾′〉, and 〈Δ𝑠′𝑅 ∙ 𝛾𝑜𝐾〉. This in turn leads to 18%, 82%, 0%, and 

0% for Eq. 12, as well as 0%, 79%, 0%, and 21% for Eq. 7. In both cases, the sum of all of the factors 

fully recovers the total uncertainty. The attributions elaborate how the spread in cloud feedback is 

reduced by the initial constraint: substituted to 45% and 57% for total clouds, the ranges of the T* and 

residual terms experience different reductions among the cloud types; the kernel and interaction terms 

are almost eliminated in all cases as is expected. 

 

Process-oriented emergent constraint in two stages. Applied to cloud sensitivity, present-day 

simulation biases, and regional SST change, our stagewise emergent constraint on the global cloud 

feedback employs an uncertainty attribution procedure, based on the analytical framework for percentage 

cloud change. Fig. 2 illustrates how to substitute the projected observations 𝛼𝑝 for the simulated 
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sensitivity 𝛼 of Δ regressed on T* at each cloud height, as well as 𝛾𝑜 for 𝛾, and how to constrict the SST 

patterns using the observational range. 

 

After summing the annual-mean clisccp and its changes over all optical depths, we carry out a 

percentage calculation, spatial correlation, and linear regression of Δ against T* in the tropics. Hence, the 

percentage cloud sensitivity is obtained at seven pressure levels for the abrupt-4×CO2 experiments (𝛼), 

historical simulations (𝛼ℎ), and averaged observations (𝛼𝑜). We then perform linear regression of 𝛼 

against 𝛼ℎ, based on their high rm value of 0.86, and use this to project 𝛼𝑜 onto 𝛼𝑝. A 7-level ratio of |
𝛼𝑝

𝛼
| is 

calculated for each of the 21 models and is multiplied by the global Δ from the 7-by-7 clisccp according to 

Eq. 6, except for those that are weakly correlated with T* (|𝑟𝑠| < 0.15, mostly middle clouds). Based on 

the linear relationship with 𝛼, the cloud sensitivity to the spatial-mean surface warming (𝛽 in Fig. 3A) is 

implicitly scaled by the same factor. Additionally, cloud fraction 𝛾𝑜 observed by MODIS is used to replace 

the climatology 𝛾 in the tropical fractional kernels (𝛾𝐾 in Eq. 5) simulated by each model. These form the 

initial stage of our emergent constraint, represented by Eq. 6. This reduces the uncertainty and biases in 

𝜆 via 𝛼 in sensitivity and 𝛾 in pattern to derive a more reasonable 𝜆𝑠, as if computed from the observed 

mean state using a reliable projected sensitivity (Figs. 5 and 7C). 

 

The uncertainty in the observed percentage cloud sensitivity 𝛼𝑜 is also estimated for non-obscured low 

clouds and projected onto the future. We perform 500 LIM simulations to perturb the regression slope of 

the MODIS Δ against the T* from the eight members of the SST suite, and then, we obtain the 90% 

confidence interval over the 4000 sensitivities. The projection of this range via the above regression of 𝛼 

against 𝛼ℎ leads to a smaller uncertainty in 𝛼𝑝, which contains nine values of the simulated sensitivity 𝛼. 

They result from the models that can project some most likely T*, namely, CanESM2, HadGEM2-ES, and 

MPI-ESM-LR (CMIP5), as well as CNRM-CM6-1, CNRM-ESM2-1, GFDL/CM4, HadGEM3-GC3.1-LL, 

UKESM1.0-LL, and UKESM1.1-LL (CMIP6). On the right-hand side of Eq. 7, we use these models for the 

three terms related to the SST patterns: 〈Δ𝑠 ∙ 𝛾𝑜𝐾′〉, 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾〉, and 〈Δ𝑠′∗ ∙ 𝛾𝑜𝐾′〉. However, the first 

(〈Δ𝑠 ∙ 𝛾𝑜𝐾〉) and last (〈Δ𝑠′𝑅 ∙ 𝛾𝑜𝐾〉) terms are unrelated to the uncertainty in T* and hence unchanged. In 

this way, the eventual stage of our emergent constraint utilizes the attribution procedure expressed by Eq. 

7 to constrict the uncertainty of T* and fully retain the residual perturbations (Fig. 6). 

 

In particular, the first term represents the product of the two ensemble means, which is free of intermodel 

variability. Therefore, it is added to the summed means of the rest of the terms for the ensemble-mean 

feedback (Fig. 6), but is excluded from the intermodel uncertainty (𝑈), which is evaluated as follows: 

𝑈 = √𝑈
〈Δ𝑠∙𝛾𝑜𝐾′〉9+〈∆𝑠

′∗
∙𝛾𝑜𝐾〉9+〈∆𝑠

′∗
∙𝛾𝑜𝐾′〉9

2 + 𝑈
〈∆𝑠

′
𝑅∙𝛾𝑜𝐾〉21

2 .    [13] 
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We first sum the three SST-related terms from the 9 (subscripted) constricted models and obtain their 

uncertainty at the 90% (66%) confidence level, calculated as half of the 5–95 (17–83) percentile range 

(9). Since the simulation choice appears abrupt, this is bootstrapped 1,000 times to increase the sample 

size. The substitution reserves 65%, 94%, 60%, and 57% of the uncertainty in the dominant T* term 

among these models, giving values of ±0.2, 0.16, 0.08, and 0.04 W m-2 K-1 (90% confidence; gray error 

bars in Fig. 6) for total, low, middle, and high cloud feedback, respectively. The uncertainty in the last 

term is then derived similarly from all 21 (subscripted) models without bootstrapping, yielding values of 

±0.18, 0.14, 0.05, and 0.04 W m-2 K-1 (90% confidence; blue in Fig. 6). Finally, Eq. 13 results in the 

constrained uncertainty of ±0.27, 0.21, 0.09, and 0.06 W m-2 K-1 (90% confidence; black in Fig. 6). 

Overall, our stagewise emergent constraint reduces the intermodel range of the global total cloud 

feedback by 59% (Fig. 7). 

 

Variances explained by linearly interdependent factors. Here we develop an exclusive R2 method to 

solve the overfitting problem in the variance explanations of the linearly interdependent factors for the 

cloud type decompositions and uncertainty attributions. For example, the sum of the variances (direct R2) 

explained by the cloud types exceeds 1 for the global shortwave feedback (Fig. S5A). To correct this, we 

need to remove the part that is repeatedly counted in the different factors due to their linear dependence. 

This study involves the situations with 2–4 factors. 

 

𝑍 = 𝐴 + 𝐵 is the simplest case, with two factors. The results of the exclusive R2 method are denoted as 

𝑅𝐴
2 and 𝑅𝐵

2  for 𝐴 and 𝐵, respectively, and the direct R2 values (squared correlations) are denoted as 

𝑅2(𝑍, 𝐴) and 𝑅2(𝑍, 𝐵). The repetitive part between 𝐴 and 𝐵 is double counted (2  1) in 𝑅2(𝑍, 𝐴) +

𝑅2(𝑍, 𝐵), so it is expressed as 𝑅𝐴𝐵
2 =

𝑅2(𝑍,𝐴)+𝑅2(𝑍,𝐵)−1

2
. With the sum guaranteed to be 1, the exclusive R2 

can be obtained as follows: 

{
𝑅𝐴

2 = 𝑅2(𝑍, 𝐴) − 𝑅𝐴𝐵
2 =

1+𝑅2(𝑍,𝐴)−𝑅2(𝑍,𝐵)

2

𝑅𝐵
2 = 𝑅2(𝑍, 𝐵) − 𝑅𝐴𝐵

2 =
1−𝑅2(𝑍,𝐴)+𝑅2(𝑍,𝐵)

2

.      [14] 

In the three-factor case, the common part between 𝐴, 𝐵, and 𝐶 is overcounted by 6 (3  2) times in 

𝑅2(𝑍, 𝐴) + 𝑅2(𝑍, 𝐵) + 𝑅2(𝑍, 𝐶), and that between any two factors is counted twice. For four factors, the 

overcounting of the part common to all of them increases to 12 (4  3), and those for fewer factors remain 

the same as in the simpler cases. Consequently, the maximum overcounting of the common part would 

reach i  (i – 1) in the case with i factors. All of the situations can be treated in a similar way to the two-

factor case, although the mathematical procedures should become increasingly complicated. 

 

Data Availability: The CMIP output at phases 5 and 6 is archived at https://aims2.llnl.gov/search/ and 
https://data.ceda.ac.uk/badc. The cloud radiative kernels can be accessed at 
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https://doi.org/10.5281/zenodo.5514137. The MODIS data are freely downloadable at 
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/cloud#modis for 
clouds, and for SST at https://oceandata.sci.gsfc.nasa.gov/directdataaccess/Level-3%20Mapped/. The 
HadISST is available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, and the 
ERSST, OISST, and COBESST are at https://psl.noaa.gov/data/gridded/index.html. 
 
Code Availability: The MATLAB, NCO, Ferret, and Python codes used to process and analyze these 
data can be obtained by contacting the corresponding author. 
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Figures 
 

 

Figure 1. Comparisons of the horizontal distributions between the model ensemble-mean tropical SST 

change patterns 𝑇∗ [contours, contour interval (CI): 0.1 K; yellow positive, cyan negative; 0 omitted] and 

the mean percentage change in cloud fraction ∆ (shading, %). 
 
They are accompanied by spatial scatterplots (right) for (A) high (red), (B) middle (green), and (C) low 

(blue) clouds. In the left panel, ∆ is beyond the intermodel spread of ∆ in the stippled areas, while the right 

panel also lists the spatial correlations and regression coefficients (% K-1) of ∆ vs. 𝑇∗. In (B), mid-level 
cloud changes in the deep tropics and subtropics (inside and outside ±15° latitudes, separated by dashed 

lines) are highlighted and individually correlated with 𝑇∗, to represent the high (red) and low (blue) cloud 
regimes, respectively. Here we use the 21 CMIP simulations normalized by the global-mean surface (air) 
warming. Implying the changes in the top heights, high and low clouds are positively and negatively 
correlated with the SST patterns, respectively, and the spatial scatters and correlations exhibit their 
competitive control over mid-level clouds. 
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Figure 2. A flowchart outlining our pattern-based analytical framework for percentage cloud change and a 
two-stage, process-oriented emergent constraint. 

The first two steps summarize our warmer-get-higher paradigm and the three main drivers of cloud 
feedback uncertainty. The last two steps first constrain the uncertainty in cloud feedback by scaling the 
percentage cloud sensitivity and substituting the observed cloud fraction. Finally, the SST pattern effect is 
constricted with the uncertainty in the projected observational sensitivity. 
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Figure 3. Intermodel scatterplots of the percentage cloud sensitivity 𝛼, i.e., the slope (% K-1) in the 
tropical regression of low cloud ∆ against T*, and other important parameters. 
 
They include (A) the spatial intercept 𝛽 (% K-1), (B) the historical sensitivity 𝛼ℎ (% K-1), and (C) the global 

radiative feedback 𝜆 (W m-2 K-1) for total clouds. The average (vertical solid bar) and uncertainty (90% 
confidence; dashed lines) of the observed sensitivity 𝛼𝑜 are computed from the LIM and its noise 
perturbations, respectively, for the MODIS clouds regressed against the SST suite. The intermodel y-x (x-
y in B) correlations and regressions are marked, which project the observed sensitivity 𝛼𝑜 onto a 

projected sensitivity 𝛼𝑝 in (B), including both the mean (horizontal solid bar) and spread (dashed lines). In 

(C), the gray rm represents the correlation across all 21 models, but the black one and regression 
coefficients are calculated without three outlier models encircled in gray. Here we use the monthly-mean 
radiative kernels, SST and cloud observations, and 21 CMIP simulations normalized by the global-mean 
surface (air) warming. The percentage cloud sensitivity to the SST patterns is highly correlated with that 
to the global-mean surface warming, as a major contributor to the uncertainty in cloud feedback for most 
models, and all models can be constrained by the projected observational sensitivity that constricts nine 
simulations (circled in black) using its projected range. 
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Figure 4. Same as in Fig. 1 but computed with the MODIS clouds and the averaged SST observations for 
2003–2022 using the LIM. 

The stippling indicates that the trend mode is beyond the spread in the LIM noise perturbations. Similar to 
the model projections in the tropical Pacific and Indian Oceans, the changes in spatial patterns from the 

observations exhibit a robust warmer-get-higher relationship between the 𝑻∗ and 𝚫, with their correlations 
opposite in high and low clouds. 
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Figure 5. Comparisons of the horizontal (left) and zonal-mean (right) distributions between cloud 
feedbacks (W m-2 K-1). 

We compare the (A) original (𝝀) and (B) substituted (𝝀𝒔) feedbacks. The ensemble mean (shading) is 
presented with the intermodel standard deviation (contours, CI: 1 W m-2 K-1; darker indicates a greater 

value). The dashed lines mark the extended tropics for 40S–40N and divide the cloud types by altitude 
at 440 and 680 hPa. Here we use the monthly-mean cloud radiative kernels, SST and cloud observations, 
and 21 CMIP simulations normalized by the global-mean surface (air) warming. After observational 
substitution by the projected sensitivity, which scales the percentage cloud sensitivity and corrects for 
biases in the fractional kernels, the cloud feedback patterns favor the eastern tropical basins, become 
more positive and the most uncertain due to stronger reductions in non-obscured low clouds, but appear 
much weaker and quieter elsewhere, e.g., in the warm pool and high latitudes of the North Atlantic, while 
the effects of middle and high clouds are almost eliminated in both the mean and spread. 
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Figure 6. Intermodel scatterplots of the substituted cloud feedback 𝜆𝑠 (W m-2 K-1) and its factor effects 
(color) evaluated using the attribution procedure, including the accumulation of the first 12 SVD modes 
controlled by the T*, residual factors, fractional kernel biases, and nonlinear T*-kernel interaction. 
 
They are for (A) total, (B) high, (C) middle, and (D) low clouds. The symbols denote the intermodel 
anomalies. The filled symbols represent the nine constricted models. The black circles examine the sum 
of all factors and are aligned exactly along the black y = x line. The dashed lines show the ensemble 
means: thin lines validate the balances of the substituted feedback (x) and the sum (y) of all factors, and 
thick lines represent the deviating eventual constraint. Error bars represent all Eq. 13 terms in turn, at the 
90% (thin) and 66% (~1 standard deviation; thick) confidence levels. The cloud feedback variances 
(exclusive R2 in Methods, %) explained by the specific factors and their sum are listed with the slopes in 
the corresponding regressions. Here we use the monthly-mean cloud radiative kernels, SST and cloud 
observations, and 21 CMIP simulations normalized by the global-mean surface (air) warming. For total 
and most types of cloud feedback, the SST patterns are recognized as the primary contributor and the 
residual factors as secondary, and the sum of all factors recovers 100% of the uncertainty. 
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Figure 7. SST patterns and cloud feedbacks. 
 
Horizontal distributions of (A) the constrained cloud feedback (W m-2 K-1) and (B) the constricted SST 
patterns T* (K) are shown along with (C) comparisons between the original cloud feedback 𝜆 (W m-2 K-1) 
and that constrained in two stages. In particular, the effect of the nine model-constricted SST pattern 
changes shown in (B) is combined with that of the residual factors in (A). In (A and B), the ensemble 
mean (shading) is shown with the intermodel spread (contours, CI: 1 corresponding unit; darker indicates 

a greater value). The dashed lines mark the extended tropics (40S–40N). For each feedback in (C), the 
symbol denotes the ensemble mean, with thin and thick error bars spanning the 90% and 66% (~1 
standard deviation) confidence intervals, respectively. Here we use the monthly-mean radiative kernels, 
SST and cloud observations, and 21 CMIP simulations normalized by the global-mean surface (air) 
warming. The constrained intermodel uncertainty in the global total cloud feedback reaches about two-
fifths of the original. 
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Figure 8. Same as in Fig. 7C but for the tropical cloud feedback computed using the 20 historical 
simulations during 1986–2005, and its comparison with the observed tropical feedback based on the 
MODIS clouds and SST suite during 2003–2022. 

Apparently, the historical range of cloud feedback is extremely reduced (about three quarters) by our 
stagewise constraint, which covers well the observed range for the strong total and low cloud feedback, 
and closely overlaps with that for the weak middle and high cloud feedback. 

 


