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Abstract

Clouds significantly influence Earth’s radiative balance with complex changes in response to surface
warming. The key drivers of the changes are the sea surface temperature (SST) pattern effect that
reshapes cloud distributions, and the beta feedback that scales low-level fraction change to climatological
amounts. Cloud radiative feedback remains the largest source of uncertainty in future climate projections,
but current constraints are insufficient. Here, we demonstrate that the percentage change in tropical cloud
fraction, driven by spatial patterns SST increase, is linked to cloud height variations. We introduce a
proportional warmer-get-higher paradigm and develop a pattern-based analytical framework, identifying
three key factors governing cloud feedback: percentage cloud sensitivity to SST, climatological cloud
cover, and SST warming patterns relative to the tropical mean. By leveraging recent observations to
constrain these factors in two stages, we establish a process-oriented emergent constraint on projected
cloud feedback in the 21st century. The first stage substitutes simulated cloud sensitivity and mean cloud
cover to correct biases and reduce spread by half. Then, the second stage attempts to further constrain
the SST pattern effect, which explains 79% of the remaining spread in an attribution procedure. This
percentage framework yields total, low, middle, and high cloud feedback of 0.49+0.27, 0.33+0.21,
0.09+0.09, and 0.07+£0.06 W m K1 (90% confidence), respectively. It reduces intermodel uncertainty by
59% for cloud feedback and 33% for surface warming, resulting in a climate sensitivity of 4.08+0.97 K.

Main Text
Introduction

As an important component of the global hydrological cycle, clouds exert a key influence over Earth’s
radiative energy budget (1). This process consists of the reflection of solar radiation by all clouds, and
infrared absorption/emission mainly by clouds in the upper and mid-troposphere (2). Because cloud
physics are complex in both convective and radiative contexts (3, 4), there is an enormous range of the
cloud responses to the greenhouse effect in climate models (5). This leads to great uncertainty of the
climate sensitivity, i.e., the projected future global warming after climate models have reached equilibrium
with an imposed greenhouse gas increase (6). Decades of research have been devoted to constraining
this cloud radiative feedback, including emergent constraints using observable statistics under the current
climate to correct the model projections (7). However, recent studies have constrained low cloud
feedback with different foci and results (8—10), such as 0.25+0.18 W m2 K* over the tropical oceans, as

well as 0.19+0.12 and 0.37+0.37 W m2 K in the near-global marine regions.

The diversity in both the methods and outcomes reflects the lack of a precise and clear understanding of
cloud change processes. This study focuses on two distinct drivers among the many different
mechanisms (6-10), some of which are widely accepted. On the one hand, the pattern effect of the sea
surface temperature (SST) increase (11) describes the impact of temporally evolving spatial SST patterns
on the radiative feedbacks and equilibrium climate sensitivity (12, 13) through reshaping the tropical
hydrological cycle, with large uncertainty among climate models (14—17). In the Coupled Model
Intercomparison Project (CMIP) phase 5, cloud feedback is most sensitive to the SST in the Indo-Pacific

warm pool, while in CMIP6 it depends on all regions with robust SST pattern change (18). On the other



hand, the beta feedback of low-level cloud change (19) represents a local coupling between the
boundary-layer cloud fraction, radiative cooling, and relative humidity based on spatially uniform SST
warming (16). Hence, the strength of the low cloud radiative effects simulated in the current climate can
largely determine the strength of the low cloud response to climate change. This results in a low cloud
reduction proportional to climatology, with a strong negative correlation between them in regions where
the mean-state cloud fraction is less than 40% (20). It is still unclear whether other types of clouds follow

a similar scaling scheme.

Thus, achieving a consistent understanding across different model generations and cloud types remains
a grand challenge. In this study, we introduce a new analytical framework to diagnose cloud feedback by
examining the percentage change in cloud fraction relative to the climatological mean cloud cover. We
find that this percentage change is approximately linearly related to the anomalous SST warming relative
to the tropical mean, consistently between the observations and two generations of model projections.
Notably, the correlations between anomalous SST and percentage cloud changes are opposite for high
and low clouds, reflecting variations in cloud top height. Our percentage framework therefore proposes a

proportional warmer-get-higher paradigm and identifies three key factors driving cloud radiative feedback.

Using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud measurements (21, 22),
converted radiative kernels (2), and a suite of SST observations (23), we constrain future projections from
7 CMIP5 and 14 CMIP6 models (24, 25). Employing an uncertainty attribution procedure, this stagewise
emergent constraint efficiently reduces the intermodel spread of the 21 CMIP simulations. In the first
stage, we indirectly link feedback uncertainty to historical cloud sensitivity to SST, substituting simulated
sensitivity and present-day cloud cover to correct biases and reduce uncertainty by half. The second
stage attempts to further constrain the SST pattern effect, explaining 79% of the remaining spread.
Ultimately, our process-oriented constraint reduces uncertainty by 59% for cloud feedback and 33% for
climate sensitivity. Validation during the historical period constrains tropical cloud feedback uncertainty to
a quarter of the original range, aligning well with the observed feedback and demonstrating the

robustness of our methodology.

Results

Systematic control of the SST patterns on percentage cloud change

We adopt abrupt CO2 quadrupling (abrupt-4xC0O2) runs by both the CMIP5 and CMIP6 models, and
calculate the monthly changes as the differences in means between model years 1-10 and 131-140 (9).
They are normalized by the global-mean increase in the surface (air) temperature, since climate feedback

is defined as the net radiative response at the top of the atmosphere per unit of global warming. For



simplicity, we denote the normalized changes as § and omit the common K in the units. Cloud changes
(26) involve the coverage (fraction, C), height (top pressure), and opacity (optical depth) of clouds.
Summing through the optical depths, we categorize the cloud types according to top height into high
(<440 hPa), middle (440-680 hPa), and low (>680 hPa) clouds. In passive satellite observations and
simulators, apparent changes in low clouds can arise due to changes in higher-level clouds that reveal or

obscure the underlying low clouds (9, 27), so we subsequently remove this obscuration effect (Methods).

In the tropical hydrological cycle, the SST warming patterns influence precipitation (14, 15) and circulation
(16, 17) in a percentage manner, i.e., their changes are proportional to their climatological values. This
convective effect on high clouds can be combined with the beta feedback of low clouds, to apply
climatological modulation to the pattern effect for all cloud types. Thus, Supplementary Materials (Fig. S1)
qualify that cloud fraction change is strongly influenced by SST patterns (T*, relative SST increase
deviating from the tropical mean warming) in terms of sign and by climatological amounts in terms of
strength. Of course, cloud responses physically depend on where relative SST warming occurs (i.e.,
regions of climatological ascent or descent). Still, these regions are characterized by more high or low
clouds in present climate, respectively. Therefore, §C exhibits various shifts from the SST patterns due to
the C-induced disparity in strength, which is even negligible for middle clouds (Fig. S1). Thus, our
percentage framework implicitly considers the regional regimes using the climatological amount, as a

local physical factor for cloud fraction change.

We therefore examine the percentage cloud change (A) in the tropics as the ratio of fraction change to
climatological amount. The definition of the tropics extends to the subtropics, i.e., 40°S—40°N (28, 29),
although spatial correlations increase for a narrower tropical band. Using overbars to indicate the annual
and multi-model averages, Fig. 1 clearly reveals a pictorial spatial correlation (rs) between the simulated
T* and A patterns, in both sign and strength for high (rs = 0.56) and low (rs = -0.58) clouds. Similar to
previous studies (15, 17), T* features El Nifio-like warming peaks in the eastern equatorial oceans and
south-to-north gradients in the subtropical Pacific. Fewer low and more high clouds appear over the areas

with relatively warmed SSTSs, predicting a rise of cloud tops (15, 30) in proportion to the cloud climatology.

According to the definition of altitude change for total clouds (2, 26, 30), we refer to the above relationship
as the proportional warmer-get-higher paradigm. However, different physical mechanisms may be at work
for low clouds and high clouds separately. Cross-comparisons reveal that A has a reasonable advantage
over 8C. The tropical A responds to T* by the same order of magnitude for all cloud types (Fig. 1) and
exhibits consistent vertical patterns in the troposphere (Fig. S2). Moreover, the oceanic zonal and

equatorial meridional means of A imply a potential competition between cloud regimes. That is, mid-level



clouds are associated with high clouds in the convective deep tropics, and with low clouds in the eastern
equatorial and subtropical subsidence regions. Also shown in Fig. 1B, these changes represent their
respective cloud regimes inside and outside £15° latitudes, by similar scatters and strong rs (0.62 and -
0.4) with the SST patterns. The corresponding regression slopes are 22.2% K and -10.2% K, which is
consistent with those of 16.9% K* and -8.5 % K- for high and low clouds, respectively. Such a distinction
in regimes can result from the depth of convection (31) and have led to the negligible correlation for the
entire tropics. This also indicates that the category of mid-level clouds is artificial and should be treated
with caution. However, a region-specific cloud categorization is beyond the scope of this study, though it
can be an interesting topic for future research. For now, we will continue to use the traditional definition of

cloud types.
Pattern-based analytical framework using percentage cloud change

In order to attribute and constrain the uncertainty in cloud change and feedback, we develop a pattern-
based percentage framework oriented by the above relationship (summarized as the first two steps in Fig.
2). The analytical definition for the patterns of percentage change in cloud fraction is

sc { C, 40°S —40°N

A= PRARET Extratropics’

(1]

where y (unitless fraction) is a percentage parameter applied only to the tropical clouds, since Fig. S1
shows little influence of the large local € (%) on the generally weak §C (%) in the extratropics. Although
this local denominator is small in some regions, it is still greater than zero. As shown in Fig. 1, land areas
experience significant percentage cloud change for low and middle clouds due to minimal cloud
coverage. However, these values are not extreme since cloud fraction change is weak where climatology

is small.

The proportional warmer-get-higher paradigm suggests an empirical pointwise formulation between
clouds and SST (15).

A= a-T"+ B (6T), [2]

where a (% K1) is defined as the percentage cloud sensitivity to the SST pattern change (8), and 5 (% K-
1) measures this to the global-mean surface warming ({(6T;) = 1 K after normalization). Separating the
relative contributions of the pattern effect and overall warming, a and 8 are spatial constants only as a
function of model and cloud type, ranging from positive for high clouds to negative for low clouds. Above
the 99.99% confidence level, f has a strong mean rate of -2.3% K (Fig. 1C) reflecting low cloud

reduction due to overall warming (32). This is spatially proportional to the cloud climatology, manifested



by the beta feedback. This reduces global radiative cooling in favor of an overall positive feedback, driven

by both radiative and latent heating via stability and entrainment (30, 33).

Furthermore, Fig. 3A exhibits wide ranges of a« and g between models (8), which has also been found for
regional precipitation changes (15). Our tests on stability indices (Fig. S4) indicates that these percentage
sensitivities share similar relative strengths contributed by cloud-controlling factors (8, 9, 27, 28) within a
given model. Therefore, @ and B have a high intermodel correlation (rm) of 0.71 for low clouds (0.62 and
0.83 for middle and high clouds, respectively), which allows us to predict 8 = 0.29 - a. This relationship

can be inserted into Eg. 2 to obtain (see Methods)
A=a- (T* + E(STS)) ~a-(T"+Ty), 3]

where T, = B (6T,) = 0.29 (6T,) = 0.29 K for low clouds, which are 0.37 and 0.31 K for middle and high

a
clouds, respectively. Regardless of the model, T, scales down the cloud response to the overall warming
using pattern effect, replacing the model-dependent 8 and leaving only one sensitivity @ to constrain.
Combining Egs. 1 and 3 quantifies that the cloud fraction change depends on both the SST patterns T*
(local and relative SST change) and the climatological amount y (local physical factor), which is an

insightful framework for integrating the pattern effect and beta feedback, respectively.

SC=Ay=~=a (T +T, " y. [4]

Cloud feedback (1) is typically calculated (2) from the product of fraction change and radiative kernels (K);
however, the above percentage framework, inspired by our proportional warmer-get-higher, gives rise to

an innovative redefinition of cloud feedback.

A={(6C-K)=(A-yK) = (a-(T*+T,) - yK), [5]

where (- ) denotes the feedback calculation, with a positive value of 4 indicating positive cloud feedback.
This explicitly discovers three key factors for the uncertainty in 4, namely cloud sensitivity («), fractional
kernels (yK), and T*, which would be constrained in two stages. Since low clouds play a leading role in
total cloud feedback (26), as shown in Supplementary Materials with Fig. S5, we take them as the main

example for the following constraint.
Initial constraint with the observed cloud fraction and projected sensitivity

Adopting the MODIS clouds (22, 34) and averaged SST suite (23), the observed changes during 2003—
2022 (Fig. 4) are calculated (Methods) using a Linear Inverse Model (LIM). The LIM is an empirical



dynamical model designed to minimize biases caused by interannual variability. The observations exhibit
similar behaviors as the CMIP simulations in the tropical Pacific and Indian Ocean, but not in the Atlantic,
which is likely due to internal decadal variability (35—37). Nevertheless, our warmer-get-higher paradigm
remains robust, as indicated by the strong A-T* relationship with opposite rs values of 0.53 and -0.5
between high and non-obscured low clouds, respectively. Since the vertical patterns (Fig. S6) are similar
but only noisier in the equatorial Pacific (rs = 0.75) and northern tropics (rs = 0.51), the observations agree
with the simulations when comparing the consistency in the magnitude of A and the disparity in the
strength of §C (modulated by C).

We then calculate the percentage cloud sensitivity from the above observations and use this «, to
construct an observational constraint on the rich diversity (-2 to —25%) of the percentage cloud sensitivity.
As outlined by the last two steps in Fig. 2, Figs. 3 and 4 are utilized to generate Figs. 5 to 7. The CMIP
historical simulations are more consistent with the observations over time than abrupt-4xCO2. Therefore,
we switch to this scenario and calculate the low cloud sensitivity (a;,) for changes between 1986—1995
and 1996-2005, as shown in Fig. 3B. We then scatter a;, from the history with « into the future, which
exhibits a close relationship (rm = 0.86), to ensure the robustness in between. The observed sensitivity
has a low cloud average (a, = -6.7% K) near the center of the historical range (-1 to -18% K), which
can be projected via linear regression of a against a;. The resulting a,, (-7.39% K™) is slightly weaker
than the ensemble-mean « (-8.5% K1) for abrupt-4xC0O2 (Fig. 1C). Incidentally, the intercept in the short-

term observations (Fig. 4C) drops to about half of that of the abrupt-4xCQO2 simulations.

The projected sensitivity, a,, can now be used to constrain the a-induced uncertainty. As shown in Fig.
3C, low cloud a contributes 48% (rm = -0.69) of the spread in global total cloud feedback, based on a
strong intermodel correlation (0.92) between the tropical and global feedbacks (Fig. S7). Here, three
outlier models weaken the contribution, but are shown in Supplementary Materials to hardly affect our

constraint and included in the final results. We apply a scaling substitution that multiplies Eq. 5 by the
ratio 0;—” for all cloud types in each experiment (see Methods and Fig. S2). This is equivalent to substituting

the projected observations a, for simulated model a. According to our analytical framework, it should

eliminate the uncertainty and bias associated with percentage cloud sensitivity in cloud feedback.

As = (Bs VoK) = LA yoK) = (@ (T" +To) oK), [6]

where the subscript s denotes substituted or scaled, o marks observed, and p means projected. It can be

seen that Eg. 6 also constrains yK in Eq. 5 by replacing the simulated y with the observed y, (pattern



comparisons are shown in Fig. S8). However, the SST patterns have not yet been constricted and remain
as shown in Fig. S1D.

Our initial constraint reduces the uncertainty and biases in A via « in sensitivity and y in pattern, deriving a
more reasonable A, (Fig. 5). This is as if A; were computed from the observed mean state with reliable
projected sensitivity, but perturbed by the original uncertainty in modeled T*. Such an observational
substitution has the distinct advantage of intuitively correcting common model biases in the fractional
kernels that induce large and noisy A over the tropical oceans (Fig. 5A), e.g., due to the excessive
equatorial cold tongue (16). This leads to more positive and the most uncertain patterns of A
preferentially in the eastern tropical basins (Fig. 5B), suggesting stronger non-obscured reductions in low
clouds modulated by its observed climatology. Eq. 6 also greatly attenuates the original feedback and
nearly removes its uncertainty elsewhere, including the negative and diverse signals in the convective
regions and high latitudes of the North Atlantic. Especially, the zonal mean patterns show that feedback
effects of middle and high clouds above 680 hPa are almost eliminated in terms of both the mean and

spread.

These turn the original global cloud feedback of 0.49+0.65, 0.26+0.3, 0.12+0.37, and 0.11+0.13 W m?2 K!
(Fig. S5) to the substituted feedback of 0.45+0.3, 0.3+0.24, 0.08+0.11, and 0.07+£0.13 W m?2 K'* (90%
confidence) for total, low, middle, and high clouds, respectively. Fig. 7C compares A, with 1 to show its
uncertainty reductions of 69% and 19% for middle and low clouds, respectively. This halves the range of
total cloud feedback and reduces its mean by 0.04 W m2 K%, mainly due to higher-level clouds, but

mitigated by an equal increase in low cloud feedback.

Attribution of cloud feedback uncertainty to the SST patterns

The observational constraint on the percentage cloud sensitivity to SST patterns and mean cloud cover
are sufficient to reduce more than half of the uncertainty in total cloud feedback. We now further constrain
the global cloud feedback by constricting the SST patterns themselves (T*). Indeed, the spatial mean of
SST patterns is defined to be zero, but fractional kernels can assign unequal weights in Egs. 5 and 6,

creating a global radiative imbalance. Moreover, there is great uncertainty (Fig. 1D) in T* (15), which can



thus be incorporated into cloud feedback, allowing the pattern effect to profoundly perturb the climate
sensitivity (11, 12, 13, 35).

To quantify this, we decompose A, using our percentage analytical framework to design an attribution
procedure (see Methods). This can demonstrate component reductions in feedback uncertainty by the

initial constraint and further constrain the substituted feedback.
/15 = (A_s ' VOE) + (A_s ) ]/OK,) + (As’* ) YOE) + (As’* ) )/OK’> + <As’R ) yoK>: [7]

where the overbars and primes denote ensemble means and intermodel anomalies, K’ is interpolated for
each model from the surface shortwave albedo along longitude, A" is the.anomalous scaled percentage
cloud change (A,') driven by T*, and A,'y is the residual factors, including the inversion strength (12, 28)
and optical depth (9, 38). The last term introduces noise into Egs. 2 to 6, so we use the approximate

equal sign (=).

Instead of evaluating Egs. 6 and 7 for each model, we obtain A" via intermodel singular value
decomposition (SVD) between T* and A" across the globe. This quantifies the SST pattern effect on the
percentage cloud change for individual models. To avoid overreliance on either variable, we provide
covariant spatio-model modes between the two (15, 29, 39, 40). The SVDs are applied to both the scaled
A, and unscaled A, presenting similar modes in reasonably shifted orders (Supplementary Materials, Fig.
S9 and Methods). We then adopt these results to perform two sets of attributions using Eqgs. 7 and 12, for
As with and A without the initial constraint. In turn, the terms on the right-hand side represent the product
of the ensemble averages including T,, biases in the fractional kernels, uncertainty induced by the SST

patterns, nonlinear interaction between the two, and the residual effect.

Since the cumulative variance of SVD reconstruction converges after the ~11 leading modes, we
accumulate the first 12 modes to represent the T* effects (17) in both A, (Fig. S10) and 4 (see Methods).
A comparison of these attributions between Fig. 6 and Fig. S11 clearly shows how the initial constraint
halves the uncertainty in total cloud feedback. The 90% confidence intervals of T* and the residual terms
are reduced by 55% and 43%, respectively, and the kernel and interaction terms are largely eliminated,
as is expected. The latter is similar for all of the cloud types, while the former varies, leading to different
uncertainty reductions. As a result, the T* contribution to the intermodel variance drops from 82% for A to
79% for A, and the residuals explain 21%. The kernel biases account for 18% of the uncertainty in 1. The

decompositions for the cloud types largely agree with that of total cloud feedback (Fig. 6), recognizing the



residual factors as a secondary contributor and the SST patterns as the primary. The sum of all of the

factors recovers 100% of the total uncertainty.

Eventual constraint attempted for the SST pattern effect

SVD mode 1 (Fig. S9 A to C) shows a prominent T* feature in 30°S—30°N, correlated with the
climatological fraction of low plus middle clouds (Fig. S1 B + C; rs = 0.33), and the fractional net kernel
(Fig. S8C; rs = -0.34). This establishes a link between the SST patterns and climatological cloud radiative
effects in space, implying air-sea feedback against the backdrop of a spatially uniform SST increase. The
fraction of low clouds decreases in proportion to the present-day fraction (19, 20), indicating rapid
dissipation in the subsidence rather than convective regions. Therefore, surface solar heating increases
more in the equatorial cold tongue and northeastern subtropical Pacific, which drives the anomalous
warming patterns. Such an initial SST anomaly scales with climatological cloud radiative effects and can
lead to further evolution (e.g., meridional gradients in SVD mode 2) of the equilibrium (41) SST patterns
(Fig. S1D). Reasonably, the magnitude of this local feedback is also adjusted by the percentage cloud
sensitivity, as revealed by its strong intermodel correlation with the principal components (PCs) of mode
1: 0.51 and 0.57 (0.46 and 0.52 with the outlier models) for SST and clouds, respectively. Thus, our
percentage analytical framework allows the sensitivity diversity to play a key role in tuning SST patterns,

generating up to 32% of the large uncertainty among models.

The above implication inspires the eventual constraint (Fig. 2), based on recent observations of
percentage cloud sensitivity. We regress the LIM-perturbed low cloud A in the non-obscured MODIS
dataset, against T* from each member of the SST suite. The 90% confidence interval of these sensitivity
estimates indicates the uncertainty range of a, (see Fig. 3B). The range is then projected onto a, through
the previously established regression of a against «;,. This leads to an uncertainty range that is slightly
narrower than that of «,. It constricts the nine runs (filled symbols in Fig. 3C), which were performed
using three CMIP5 and six CMIP6 models. We postulate that these models have more reliable « values
to project some reasonable magnitudes of the local cloud feedback and determine the most likely T*. We
finally complete the emergent constraint with the attribution procedure according to Eq. 7. In particular,
the three terms related to the SST pattern effect are extracted from these models; however, the residual
factors should remain unchanged (see Methods). Therefore, the dominant T* term is constrained to the
values of the nine models in Fig. 6. Compared to Fig. S11, its uncertainty is reduced by 35%, 6%, 40%,

and 43% for total, low, middle, and high clouds, respectively.

In total, the constrained cloud feedback in Fig. 7A is more positive than that in Fig. 5B, and the maxima

still remain in the low cloud regions, where the intermodel uncertainty is further reduced and is mainly



confined to the eastern tropical ocean basins. Compared to the original T* (Fig. S1D), the constricted one
(Fig. 7B) exhibits generally weakened patterns, except for the Southern Ocean warming. Nevertheless,
these SSTs look close in the ensemble mean because they share the same SVD modes; whereas, the
tropical spread is much reduced by the constriction using the nine models that have similar amplitudes for
the cloud-triggered mode. The global high, middle, low, and total cloud feedback (Fig. 7C) becomes
0.07+0.06, 0.09+0.09, 0.33+0.21, and 0.49+0.27 W m2 K'! (90% confidence), respectively. Examining the
outlier models at the end of Supplementary Materials reveals a marginal effect on our constraint, so we

keep them in the final results. This also reflects the great robustness of our method.

Aligned with the literature, our non-obscured low cloud feedback is similar to the multi-evidence work (9,
10) and median-tight effort (8) in the ensemble mean and uncertainty, respectively. However, our pattern-
based percentage framework consistently constrains global radiative feedback across all of the cloud
types, rather than just low clouds. In detail, it applies to the entire cloud fraction histogram with different
scaling between pressure levels, explicitly addressing the amount and altitude feedbacks simultaneously.
Furthermore, Supplementary Materials exhibit that our approach can implicitly adjust optical depth
feedback (see Fig. S12). For instance, high cloud altitude feedback remains positive during our constraint
because of rising cloud tops. However, this is mitigated by negative optical depth feedback, which results
from increased solar reflection due to thickening high clouds (26). Such a decrease in feedback of -0.04
by high clouds reinforces the -0.03 by middle clouds, to offset the increase of 0.07 W m2 K1 by low
clouds. Thus, our constraint keeps the mean unchanged for total cloud A while significantly reducing its
uncertainty by 59%, as significant improvements from 0.27+0.41 and 0.45+0.54 W m2 K1 (9, 10).

Validating our methodology and constraining climate sensitivity

Given the increasing complexity of the statistical analysis for observational constraints on cloud feedback,
a validation is necessary to make a convincing case (9, 37). Therefore, we follow the precedent of recent
studies to validate our two-stage emergent constraint by applying it to the historical simulations in the
tropics, where T* differs from the future. These results are compared with cloud feedback based on the
observations (Fig. 8), where the aerosol-cloud interaction is important. However, it cannot be removed for
either observations or simulations, so we do not distinguish this aerosol effect from cloud feedback. The
historical shortwave kernel is calculated with the corresponding albedo, and the observational kernels are

taken from an interannual reanalysis (42). The MODIS cloud change in Fig. S6 A and B is used to



compute the radiative effect, normalized by the tropical-mean warming from the SST suite, which

provides the uncertainty.

In Fig. 8, the observed tropical feedback (90% confidence) of total clouds is 0.55+0.11 W m K%, which is
consistent with the global feedback of 0.57+0.71 W m2 K'* when the effects of changing water vapor,
surface and atmospheric temperature, surface albedo, and radiative forcing are subtracted from the top-
of-atmosphere flux (43). This is dominated by low clouds (0.49+0.1), with insignificant contributions from
middle (-0.05+0.01) and high (0.11+0.02 W m K1) clouds. In contrast, the original historical cloud
feedback has a very small ensemble mean but extremely large intermodel variability (90% confidence),
i.e., 0.07+2.98, -0.18+1.75, 0.13+0.89, and 0.12+0.67 W m2 K%, This bias from the observations is rapidly
reduced by the substituted feedback of 0.87+0.88, 0.8+0.83, 0.14+0.17, and -0.07+0.36 W m2 K. Finally,
the constrained feedback can well cover the observed range for the strong total (0.69+0.53) and low
(0.56+0.47) cloud feedback, and closely overlaps with that for the weak middle (0.23+0.17) and high (-
0.1+0.24 W m K1) cloud feedback. This not only dramatically reduces total cloud feedback uncertainty

by 82%, but also fully validates our percentage framework and stagewise constraint.

Our pattern-based percentage framework effectively constrains total cloud feedback — consisting of
those due to amount, altitude, and optical depth — across the globe via strong relationship between the
tropical and global feedbacks. Therefore, we can confidently constrain the effective equilibrium climate
sensitivity using constrained cloud feedback (9, 13). This is estimated as the x intercept divided by two
(as if under 2xC0O2) after regressing the global-mean and annual-mean anomalies of the net downwelling
radiative flux at the top of the atmosphere on those of the surface temperature, where both anomalies are
calculated between the abrupt-4xCO2 scenario and the averaged piControl over years 91-140. It is
highly correlated (rm = 0.8) with the global total cloud 4, so its uncertainty can be reduced with our
constrained net feedback. The hierarchical emergent constraint method is applied under the assumption
of Gaussian distributions of the intermodel spreads (44). This leads to an unaffected mean of 4.08 K, and
a 35% reduction in the spread from £1.29 K to £0.84 K (66% confidence), which is more effective than the
25% reduction from the latest study (9). At the 90% confidence level, the reduction is 33% from 4.08+1.44
K to 4.08+0.97 K, consistent with, but tighter than, a combined estimate of 4.0£1.07 K with a large

overconfidence based on several emergent constraints (45).

Discussion

By integrating the pattern effect and beta feedback, which have previously been considered in isolation,
this study reveals the systematic control of the percentage change in cloud fraction due to effect of the
tropical SST patterns. A proportional warmer-get-higher paradigm is then proposed to tightly constrain the

global radiative feedback for all cloud types. The main sources of intermodel variability are identified as



the percentage cloud sensitivity, present-day simulation biases, and regional SST change. We first
address the former two by substituting the historical-projected observed sensitivity and MODIS cloud
fraction and then try an observational constraint on the latter factor based on an uncertainty attribution
procedure. The constrained uncertainty in total cloud feedback reaches about two-fifths of the original, but
the mean value remains unchanged, suggesting that the feedback extremes are less likely to be valid.
For the equilibrium climate sensitivity, this constraint translates into about two-thirds of the original

uncertainty, again leaving the mean unchanged.

Our validation results based on the historical simulations cover the observed range of the significant cloud
feedback well, with an extreme uncertainty reduction of about three quarters, indicating a successful
emergent constraint. Nevertheless, future changes in the SST patterns are highly uncertain (10, 46-52),
which cannot be fully constrained by « alone, as is evident in Fig. 7B with a peak in the North Atlantic.
This reflects that the nine constricted models may have deficiencies in other areas, such as ocean
dynamics, mean state SST biases, additional atmospheric processes, and atmosphere-ocean interactions
(53). To further resolve such spread and improve the reliability of climate projections, SST pattern
formation under global warming needs to be re-examined. For this, our pattern-based analytical
framework for percentage cloud change may provide an insightful perspective as a unique trigger of air-

sea interactions.

Methods

SST and cloud observations. The SST observations (23) are adopted from the MODIS, Hadley Centre
Sea Ice and SST (HadISST), Extended Reconstructed (ERSST) v5, Optimum Interpolation (OISST) v2,
and Centennial Observation-Based Estimates (COBESST) v1. Among these, MODIS provides retrievals
from two polar-orbiting satellites, Terra and Aqua, that sample at different times of day (morning and
afternoon) and night (before and after midnight) at a given location. We create a data suite of all of the
SST products to analyze their mean and uncertainty. Combining the Aqua and Terra cloud observations,
MODIS releases a Level-3 CFMIP Observation Simulator Package (MCDO6COSP). It facilitates
comparison between climate models and satellite observations by producing synthetic MODIS data from
the model integrations, e.g., the cloud property histogram (22). Cloud fraction is given separately for
partly cloudy scenes and for overcast scenes, which we add together to obtain cloud fraction for all cloud

scenes, based on the recently corrected v6.2 dataset.

We use the monthly products covering 2003—2022 and process them into a spatial resolution of 1°
latitude by 2° longitude. The SST and cloud changes are computed using an LIM to minimize the biases
caused by interannual variability (23). The LIM is an empirical dynamical model that treats spatially

varying climate anomalies as a combination of the predictable dynamics plus an unpredictable nonlinear



white noise. Approximated using a stochastically forced linear dynamical system, the time evolution of a
climate variable is determined from the observed state vector, expressed in a reduced space of empirical
orthogonal function (EOF). These EOFs have been obtained separately for each field, and the 20 leading
PCs are input to the LIM. The lag-covariance for the linear dynamical operator is then computed using a
training lag of 11 months, to which the results are generally insensitive. The least damped eigenmode of
the LIM operator varies the slowest, so it is ultimately captured as the externally forced trend. The LIM
provides detrended PC simulations to generate noise-induced perturbations for the trend. Thus, we
generate 500 realizations to estimate the uncertainty in the MODIS cloud observations regressed against
the SST suite.

Admittedly, the observations do not use exactly the same criteria for interpreting cloud top pressure as
clisccp in the models (21), e.g., many mid-level clouds retrieved by the satellite simulator are assigned
lower heights by MODIS. This upward shift in simulated cloud tops can cause potential problems in the
development of emergent constraints (9); however, the actual satellites retrieve cloud height about
correctly, so our methodology can indeed resolve the error. In addition to replacing the mean-state cloud
fraction in the models with the observations, we also scale the magnitude of the simulated cloud response
with the observed percentage cloud sensitivity, both of which correct for the level shifts of the cloud
observations. The only variable that we have not replaced with the observations is the SST patterns,
which is not height dependent. All these distinctive features of our stagewise constraint would lead to
reasonable cloud changes and result in an effective constraint. The only possible bias could be in the sign

of middle cloud change, which might be influenced more by low clouds and less by high clouds.

Multi-scenario CMIP output. Given the limited availability of the cloud property histogram (clisccp)

variable (2), we analyze the SST and cloud changes in 21 runs using 7 CMIP5 and 14 CMIP6 models

(24, 25) under the preindustrial control (piControl) and abrupt CO2 quadrupling (abrupt-4xCQO2) scenarios,

as well as 20 historical simulations without the unavailable CCSM4. The models (Fig. S3) provide clisccp

and other changes for robust quantitative assessments of cloud feedback and climate sensitivity.

CMIP6: CanESM5, CESM2-FV2*, CNRM-CM6-1, CNRM-ESM2-1, E3SM-1.0, E3SM-2.0, E3SM-2.0-
NARRM, GFDL/CM4, HadGEM3-GC3.1-LL, MIROC6, MIROC-ES2L, MRI-ESM2.0, UKESML1.0-
LL, and UKESM1.1-LL;

CMIP5: CanESM2, CCSM4*, HadGEM2-ES, MIROC5, MIROC-ESM, MPI-ESM-LR, and MRI-CGCM3.

*Historical simulations: CESM2 is found instead of CESM2-FV2; and CCSM4 is not available.

We adopt the monthly output of one realization from each simulation and interpolate all of the fields to a
2° latitude by 2.5° longitude grid prior to analysis. Averaged over years 91-140, the piControl runs are

used to calculate the abrupt-4xC0O2 anomalies for estimating the climate sensitivity. The abrupt-4xC0O2



experiments are at least 140 years long (except for 104 years of CCSM4), and the changes are defined
as the differences between the last and first 10-year long means. The historical simulations cover the
periods 1850-2014 in CMIP6 and 1850-2005 in CMIP5. We select a mutual 20-year period of 1986—-2005
for comparison with the observations during 2003-2022. It is assumed that such a year shift would not
affect the results, which is supported by the high rm value (0.83) for low cloud «;, from the CMIP6 runs
between 1995-2014 and 1986-2005. For a consistent relationship with a under abrupt-4xCQO2, the

changes are defined in the same way.

Cloud feedback is expressed as the response of the top-of-atmosphere net radiative flux to the changes
per unit of global-mean surface air warming; therefore, the cloud changes are normalized accordingly
before computing the ensemble means, uncertainties, spreads, correlations, regressions, and SVDs. In
addition, the SST patterns are normalized by the global-mean increase in the surface temperature ({(8T;)),
which differs from the air warming by only -0.02+0.07 K. For simplicity, the normalized changes are
marked by &, and the common K in their units is omitted. The 90% (66%) confidence interval (e.g., of
cloud feedback) is calculated as +half of the 5-95 (17—-83) percentile range of the values across the

simulations (9).

Cloud feedback computed using radiative kernels. The clisccp variable, endorsed by the Cloud
Feedback Model Intercomparison Project (CFMIP), represents a 7 by 7 histogram of cloud properties
along the top pressure (p) and optical depth (7). Summations in its matrix or submatrices can classify total
or each type of clouds to calculate the corresponding fraction (C) in the climatology or change (6C), as
well as cloud feedback (1). By summing throughout t, we categorize the cloud types according to p.

(a) High clouds: 0—440 hPa (pressure levels 5-7), all optical depths;

(b) Middle clouds: 440-680 hPa (pressure levels 3—4), all optical depths;

(c) Low clouds: 680—-1000 hPa (pressure levels 1-2), all optical depths;

(d) Total clouds: 0—1000 hPa (all pressure levels), all optical depths.

The passive satellite sensors and simulators report the top pressure of the highest clouds in the column,
allowing an amount increase of higher-level clouds to obscure more of low-level clouds. This reduces low
cloud amount retrived by the satellite, even if it does not actually change (27). Here we remove this
obscuration effect (9) by separating the real low cloud changes from the artificial changes in the satellite

data.

{ln == _ {&n —(1-D)6l,

- = (8]
U= %le =0 -01



where ¢ = c¢,, denotes clisccp, [ = 1,,; is the retrieved low-level cloud fraction, U is the higher-level cloud
amount (cloud fraction summed over all T bins and the non-low-level p bins), [,, is the non-obscured low-
level cloud fraction, U and [, are the climatological monthly means of U and [,,, and &1, is the normalized
monthly change in [,,. This yields non-obscured histograms of cloud fraction actually used for low clouds,

i.e., ¢, and ¢, in climatology and change, respectively.

The cloud radiative kernels (2) convert the clisccp change per unit of global-mean surface air warming
into its corresponding radiative effect, quantifying cloud feedback across the various models as a reliable
and consistent methodology. They use the incremental monthly cloud change to describe the differential
response of the top-of-atmosphere shortwave and longwave fluxes. Such conversions act as spatial

weights for the changes in the cloud properties to calculate the global feedback as follows:

(&) Normalize the changes in cloud histogram using the global-mean surface air warming;

(b) Interpolate the shortwave kernel with the surface albedo (upward/downward clear-sky shortwave
flux) in each model along longitude;

(c) Multiply the histogram changes by the longwave and interpolated shortwave kernels;

(d) Perform summation along pressure and/or optical depth for total and each cloud type;

(e) Average annually over 12 months and horizontally over the globe.

The entire procedure is denoted by (- ), such as A = (6C - K) in Eq. 5, where A is defined as positive for

positive feedback from clouds.

Intermodel statistical analysis. This statistical analysis explores the dynamical interpretations for tracing
the valuable sources of uncertainty, e.g., the contribution of the percentage cloud sensitivity to cloud
feedback. Regular statistics use spatiotemporal fields as inputs, but here we replace the time axis with
the model series to perform intermodel analysis. In particular, the intermodel correlations and regressions
are performed for cloud feedback, and the variances explained by different factors are estimated as the
exclusive R? (to be introduced) for the total effect. In addition, Student’s t-tests are used to assess the

confidence of the correlations using the following formula:

t =" (), [9]

1-r

where tr is the test statistic derived from the correlation r (rs or rm) and the sample size n. All of rm across
the 21 models are above the 90% confidence level. Except for the (percentage) fraction change in total
and middle clouds, all of rs pass the 99.99% confidence tests because the tropical sample size is at least
4430 for the SST patterns or 270 for the zonal-mean cloud fraction.

As an extension of the EOF, the SVD analysis (21, 22) is a popular multivariate statistical method, which

uses two variables as inputs to identify their patterns with the maximum covariance. Here we perform



intermodel SVD (23, 24) to extract the effect of the SST patterns on the regional cloud changes with their
covariant modes. Two sets of SVDs are applied to the monthly intermodel anomalies of A and A, in Egs. 5
and 6, respectively. They are both between the global T* (4-D: x, y, month, model) and cloud changes (6-
D: x,y, p, T, month, model) in terms of the percentage for the extended tropics (40°S—40°N) and the
fraction for the outside extratropics. All of the variables have been concatenated into 2-D matrices with
dimensions only along the model and the combinations of others, and the ensemble mean is removed for
each grid box. A covariance matrix Co = A'T*/N is then constructed by eliminating the common model

dimension, where t denotes the transpose operator and N represents the number of models.

The SVD function converts Co into a tuple of three arrays E, Z, and F. Each column in E contains a
singular vector for A, as does F for T*, while Z contains the singular values not used here. These
orthonormal singular vectors are identified as the spatial modes and are projected onto each of the
variables to define the corresponding PCs, which are also model-dependent. We then use the fractional
kernels to compute the partial feedback due to the cloud patterns in each of the SVD modes, and we
multiply it by the corresponding PC. This reconstructs the T*-related intermodel variability in cloud
feedbacks associated with these modes, which are ranked according to the individual variances (direct
R?) they explain for the intermodel uncertainty in the total cloud feedback. Finally, the multi-model partial
feedbacks reconstructed by the leading SVD modes are linearly combined to quantify their cumulative

variance (25) using the exclusive R? method below.

Uncertainty attribution procedure for cloud feedback. Based on our analytical framework inspired by
the warmer-get-higher paradigm, we redefine cloud feedback in terms of percentage fraction change in
the tropics. Here, the definition of the tropics includes the subtropics, with a latitudinal range of about
35°S—-35°N. According to the American Meteorological Society, this can extend further poleward on west
coasts of continents, e.g., prominent §C patterns shown in Fig. S1 reach 40° over the eastern ocean
basins. Thus, we define the extended tropics as 40°S—40°N to better represent thermally driven dynamics
(28, 29).

Eq. 5 identifies key drivers of the uncertainty in cloud feedback by distinctly integrating the physical
processes of the pattern effect and beta feedback in the extended tropics. The percentage change in
cloud fraction is mainly controlled by the SST patterns, and its sensitivity varies between the models. This
is independent of the cloud climatology, which introduces the biases of the mean-state simulation into the

cloud fraction change. To obtain this in detail, Eq. 3 is derived from Eqg. 2 and Fig. 3A:

A~a-T"+029a-1K
=a'T"+a-029K . [10]

A=a-T"+ B (6Ts) }:
=a(T*+T0)

B=029-a—191~= 029«



We believe that the intercept of -1.91% K is negligible (54, 55). It is less than the standard deviation
(2.26 % K1) of p and only about 22% (Fig. 3A) of its wide range (-0.7 to -8% K1).

Eq. 5 transforms the product of cloud fraction change (6C) and radiative kernels (K) into that of the
percentage change (A) and fractional kernels (yK), which can be further decomposed.
{AzAiAzA-l:A + Ay [11]

YK =vK + (vK)

where the overbars and primes denote the ensemble means and intermodel anomalies, and A™ and A’
are the components of A’ induced by T* and the residual factors, respectively. It should be noted that we
use the approximate equal sign (=) in the above equations about A to imply the noise introduced by A'g.
In order to quantify the contributions of factors such as the T* spread and the yK biases, an uncertainty

attribution procedure can be derived for the redefined global cloud feedback as follows:

A=((A+ 2" +A%) - [yK + K],
S A=A yK)+ (A (YK)')+ (A" - yK) + (A" - (yK)') + (AR  YK). [12]

Similarly, the substituted feedback 4, in Eq. 6 can be decomposed as in Eq. 7, where A and y,, replace A

and y, and the treatment of y, K is slightly adjusted from Eq. 11: y,K = y,K + y,K'.

The SST pattern effect is obtained using the intermodel SVDs mentioned above (Fig. S9). In Figs. S10

and S11 and Fig. 6, the factor contributions are quantified slightly differently. The former only examines
the cloud feedback anomalies associated with the ensemble-mean factional kernels ({(A,’ - y,K)). The

dominant influences of the T* term ((A,"* - y,K)) converge to 77% for A, and 86% for A, both after the ~11
leading SVD modes. In contrast, the latter two quantitatively attribute the feedback to all of the intermodel
terms, e.g., (As - Vo K'), (As™ - VoK), (A" - v,K'), and (A - ¥,K). This in turn leads to 18%, 82%, 0%, and
0% for Eq. 12, as well as 0%, 79%, 0%, and 21% for Eq. 7. In both cases, the sum of all of the factors
fully recovers the total uncertainty. The attributions elaborate how the spread in cloud feedback is
reduced by the initial constraint: substituted to 45% and 57% for total clouds, the ranges of the T* and
residual terms experience different reductions among the cloud types; the kernel and interaction terms

are almost eliminated in all cases as is expected.

Process-oriented emergent constraint in two stages. Applied to cloud sensitivity, present-day
simulation biases, and regional SST change, our stagewise emergent constraint on the global cloud
feedback employs an uncertainty attribution procedure, based on the analytical framework for percentage

cloud change. Fig. 2 illustrates how to substitute the projected observations a,, for the simulated



sensitivity @ of A regressed on T* at each cloud height, as well as y, for y, and how to constrict the SST

patterns using the observational range.

After summing the annual-mean clisccp and its changes over all optical depths, we carry out a
percentage calculation, spatial correlation, and linear regression of A against T* in the tropics. Hence, the
percentage cloud sensitivity is obtained at seven pressure levels for the abrupt-4xCO2 experiments (),

historical simulations («;), and averaged observations («,). We then perform linear regression of «
against a;, based on their high rm value of 0.86, and use this to project «, onto «,,. A 7-level ratio of |“7f| is

calculated for each of the 21 models and is multiplied by the global A from the 7-by-7 clisccp according to
Eq. 6, except for those that are weakly correlated with T* (|r;] < 0.15, mostly middle clouds). Based on
the linear relationship with «, the cloud sensitivity to the spatial-mean surface warming (8 in Fig. 3A) is
implicitly scaled by the same factor. Additionally, cloud fraction y, observed by MODIS is used to replace
the climatology y in the tropical fractional kernels (yK in Eg. 5) simulated by each model. These form the
initial stage of our emergent constraint, represented by Eq. 6. This reduces the uncertainty and biases in
A via a in sensitivity and y in pattern to derive a more reasonable A, as if computed from the observed

mean state using a reliable projected sensitivity (Figs. 5 and 7C).

The uncertainty in the observed percentage cloud sensitivity «, is also estimated for non-obscured low
clouds and projected onto the future. We perform 500 LIM simulations to perturb the regression slope of
the MODIS A against the T* from the eight members of the SST suite, and then, we obtain the 90%
confidence interval over the 4000 sensitivities. The projection of this range via the above regression of a
against a;, leads to a smaller uncertainty in a,, which contains nine values of the simulated sensitivity a.
They result from the models that can project some most likely T*, namely, CanESM2, HadGEM2-ES, and
MPI-ESM-LR (CMIP5), as well as CNRM-CM6-1, CNRM-ESM2-1, GFDL/CM4, HadGEM3-GC3.1-LL,
UKESML1.0-LL, and UKESM1.1-LL (CMIP6). On the right-hand side of Eq. 7, we use these models for the
three terms related to the SST patterns: (A, - y,K'), (A, ¥,K), and (A, - y,K'). However, the first

(A - ¥,K)) and last ((A,'% - ¥,K)) terms are unrelated to the uncertainty in T* and hence unchanged. In
this way, the eventual stage of our emergent constraint utilizes the attribution procedure expressed by Eq.

7 to constrict the uncertainty of T* and fully retain the residual perturbations (Fig. 6).

In particular, the first term represents the product of the two ensemble means, which is free of intermodel
variability. Therefore, it is added to the summed means of the rest of the terms for the ensemble-mean

feedback (Fig. 6), but is excluded from the intermodel uncertainty (U), which is evaluated as follows:

— 2 2
v= \/U<A_S'yDK’)9+(AS’*'VOE)9+(AS’*'YOK,)9 + U<A5’R'VUK)21. [13]



We first sum the three SST-related terms from the 9 (subscripted) constricted models and obtain their
uncertainty at the 90% (66%) confidence level, calculated as +half of the 5-95 (17-83) percentile range
(9). Since the simulation choice appears abrupt, this is bootstrapped 1,000 times to increase the sample
size. The substitution reserves 65%, 94%, 60%, and 57% of the uncertainty in the dominant T* term
among these models, giving values of +0.2, 0.16, 0.08, and 0.04 W m2 K1 (90% confidence; gray error
bars in Fig. 6) for total, low, middle, and high cloud feedback, respectively. The uncertainty in the last
term is then derived similarly from all 21 (subscripted) models without bootstrapping, yielding values of
+0.18, 0.14, 0.05, and 0.04 W m K (90% confidence; blue in Fig. 6). Finally, Eg. 13 results in the
constrained uncertainty of £0.27, 0.21, 0.09, and 0.06 W m~ K (90% confidence; black in Fig. 6).
Overall, our stagewise emergent constraint reduces the intermodel range of the global total cloud
feedback by 59% (Fig. 7).

Variances explained by linearly interdependent factors. Here we develop an exclusive R? method to
solve the overfitting problem in the variance explanations of the linearly interdependent factors for the
cloud type decompositions and uncertainty attributions. For example, the sum of the variances (direct R?)
explained by the cloud types exceeds 1 for the global shortwave feedback (Fig. S5A). To correct this, we
need to remove the part that is repeatedly counted in the different factors due to their linear dependence.

This study involves the situations with 2—4 factors.

Z = A + B is the simplest case, with two factors. The results of the exclusive R? method are denoted as
RZ and R for A and B, respectively, and the direct R? values (squared correlations) are denoted as

R%(Z,A) and R%(Z, B). The repetitive part between A and B is double counted (2 x 1) in R2(Z,A) +

2 2 _
R?(Z,B), so it is expressed as R3; = w. With the sum guaranteed to be 1, the exclusive R?

can be obtained as follows:

2 _p2
Rﬁ = R2(Z, A) _RﬁB _ W+R*(ZA)-R*(ZB)
2 [14]

1-R2(Z,A)+R%(Z,B)’
2

R; =R*(Z,B) — R}z =
In the three-factor case, the common part between A, B, and C is overcounted by 6 (3 x 2) times in
R?(Z,A) + R*(Z,B) + R?(Z, C), and that between any two factors is counted twice. For four factors, the
overcounting of the part common to all of them increases to 12 (4 x 3), and those for fewer factors remain
the same as in the simpler cases. Consequently, the maximum overcounting of the common part would
reach i x (i— 1) in the case with i factors. All of the situations can be treated in a similar way to the two-

factor case, although the mathematical procedures should become increasingly complicated.

Data Availability: The CMIP output at phases 5 and 6 is archived at https://aims2.lInl.gov/search/ and
https://data.ceda.ac.uk/badc. The cloud radiative kernels can be accessed at



https://doi.org/10.5281/zenodo.5514137. The MODIS data are freely downloadable at
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/cloud#modis for
clouds, and for SST at https://oceandata.sci.gsfc.nasa.gov/directdataaccess/Level-3%20Mapped/. The
HadISST is available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, and the
ERSST, OISST, and COBESST are at https://psl.noaa.gov/data/gridded/index.html.

Code Availability: The MATLAB, NCO, Ferret, and Python codes used to process and analyze these
data can be obtained by contacting the corresponding author.
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Figure 1. Comparisons of the horizontal distributions between the model ensemble-mean tropical SST
change patterns T* [contours, contour interval (Cl): 0.1 K; yellow positive, cyan negative; 0 omitted] and
the mean percentage change in cloud fraction A (shading, %).

They are accompanied by spatial scatterplots (right) for (A) high (red), (B) middle (green), and (C) low
(blue) clouds. In the left panel, A is beyond the intermodel spread of A in the stippled areas, while the right
panel also lists the spatial correlations and regression coefficients (% K1) of A vs. T*. In (B), mid-level
cloud changes in the deep tropics and subtropics (inside and outside +15° latitudes, separated by dashed
lines) are highlighted and individually correlated with T*, to represent the high (red) and low (blue) cloud
regimes, respectively. Here we use the 21 CMIP simulations normalized by the global-mean surface (air)
warming. Implying the changes in the top heights, high and low clouds are positively and negatively
correlated with the SST patterns, respectively, and the spatial scatters and correlations exhibit their
competitive control over mid-level clouds.
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Figure 2. A flowchart outlining our pattern-based analytical framework for percentage cloud change and a
two-stage, process-oriented emergent constraint.

The first two steps summarize our warmer-get-higher paradigm and the three main drivers of cloud
feedback uncertainty. The last two steps first constrain the uncertainty in cloud feedback by scaling the
percentage cloud sensitivity and substituting the observed cloud fraction. Finally, the SST pattern effect is
constricted with the uncertainty in the projected observational sensitivity.
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Figure 3. Intermodel scatterplots of the percentage cloud sensitivity «, i.e., the slope (% K?) in the
tropical regression of low cloud A against T*, and other important parameters.

They include (A) the spatial intercept g (% K1), (B) the historical sensitivity a;, (% K*), and (C) the global
radiative feedback A (W m2 K1) for total clouds. The average (vertical solid bar) and uncertainty (90%
confidence; dashed lines) of the observed sensitivity a, are computed from the LIM and its noise
perturbations, respectively, for the MODIS clouds regressed against the SST suite. The intermodel y-x (x-
y in B) correlations and regressions are marked, which project the observed sensitivity a, onto a
projected sensitivity a,, in (B), including both the mean (horizontal solid bar) and spread (dashed lines). In
(C), the gray rm represents the correlation across all 21 models, but the black one and regression
coefficients are calculated without three outlier models encircled in gray. Here we use the monthly-mean
radiative kernels, SST and cloud observations, and 21 CMIP simulations normalized by the global-mean
surface (air) warming. The percentage cloud sensitivity to the SST patterns is highly correlated with that
to the global-mean surface warming, as a major contributor to the uncertainty in cloud feedback for most
models, and all models can be constrained by the projected observational sensitivity that constricts nine
simulations (circled in black) using its projected range.
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Figure 4. Same as in Fig. 1 but computed with the MODIS clouds and the averaged SST observations for
2003-2022 using the LIM.

The stippling indicates that the trend mode is beyond the spread in the LIM noise perturbations. Similar to
the model projections in the tropical Pacific and Indian Oceans, the changes in spatial patterns from the
observations exhibit a robust warmer-get-higher relationship between the T* and A, with their correlations
opposite in high and low clouds.
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Figure 5. Comparisons of the horizontal (left) and zonal-mean (right) distributions between cloud
feedbacks (W m2 K1).

We compare the (A) original (1) and (B) substituted (4,) feedbacks. The ensemble mean (shading) is
presented with the intermodel standard deviation (contours, Cl: 1 W m K%; darker indicates a greater
value). The dashed lines mark the extended tropics for 40°S—40°N and divide the cloud types by altitude
at 440 and 680 hPa. Here we use the monthly-mean cloud radiative kernels, SST and cloud observations,
and 21 CMIP simulations normalized by the global-mean surface (air) warming. After observational
substitution by the projected sensitivity, which scales the percentage cloud sensitivity and corrects for
biases in the fractional kernels, the cloud feedback patterns favor the eastern tropical basins, become
more positive and the most uncertain due to stronger reductions in non-obscured low clouds, but appear
much weaker and quieter elsewhere, e.g., in the warm pool and high latitudes of the North Atlantic, while
the effects of middle and high clouds are almost eliminated in both the mean and spread.
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Figure 6. Intermodel scatterplots of the substituted cloud feedback A, (W m2 K1) and its factor effects
(color) evaluated using the attribution procedure, including the accumulation of the first 12 SVD modes
controlled by the T*, residual factors, fractional kernel biases, and nonlinear T*-kernel interaction.

They are for (A) total, (B) high, (C) middle, and (D) low clouds. The symbols denote the intermodel
anomalies. The filled symbols represent the nine constricted models. The black circles examine the sum
of all factors and are aligned exactly along the black y = x line. The dashed lines show the ensemble
means: thin lines validate the balances of the substituted feedback (x) and the sum (y) of all factors, and
thick lines represent the deviating eventual constraint. Error bars represent all Eq. 13 terms in turn, at the
90% (thin) and 66% (~1 standard deviation; thick) confidence levels. The cloud feedback variances
(exclusive R? in Methods, %) explained by the specific factors and their sum are listed with the slopes in
the corresponding regressions. Here we use the monthly-mean cloud radiative kernels, SST and cloud
observations, and 21 CMIP simulations normalized by the global-mean surface (air) warming. For total
and most types of cloud feedback, the SST patterns are recognized as the primary contributor and the
residual factors as secondary, and the sum of all factors recovers 100% of the uncertainty.
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Figure 7. SST patterns and cloud feedbacks.

Horizontal distributions of (A) the constrained cloud feedback (W m2 K1) and (B) the constricted SST
patterns T* (K) are shown along with (C) comparisons between the original cloud feedback A (W m2 K1)
and that constrained in two stages. In particular, the effect of the nine model-constricted SST pattern
changes shown in (B) is combined with that of the residual factors in (A). In (A and B), the ensemble
mean (shading) is shown with the intermodel spread (contours, Cl: 1 corresponding unit; darker indicates
a greater value). The dashed lines mark the extended tropics (40°S—40°N). For each feedback in (C), the
symbol denotes the ensemble mean, with thin and thick error bars spanning the 90% and 66% (~1
standard deviation) confidence intervals, respectively. Here we use the monthly-mean radiative kernels,
SST and cloud observations, and 21 CMIP simulations normalized by the global-mean surface (air)
warming. The constrained intermodel uncertainty in the global total cloud feedback reaches about two-
fifths of the original.
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Figure 8. Same as in Fig. 7C but for the tropical cloud feedback computed using the 20 historical
simulations during 1986—2005, and its comparison with the observed tropical feedback based on the
MODIS clouds and SST suite during 2003-2022.

Apparently, the historical range of cloud feedback is extremely reduced (about three quarters) by our
stagewise constraint, which covers well the observed range for the strong total and low cloud feedback,
and closely overlaps with that for the weak middle and high cloud feedback.



